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1/ Context 2/ Significance

e When comparing simulated trends to observed trends the internal variability must be accounted for (e.g. Simpson
et al., 2025 ; Jain et al., 2023)

e Before the advent of single model ensembles, “ensemble of opportunities” were used (i.e. ensemble created from
several climate models with 1 historical simulation / climate model)

e The underlying assumption was that the internal variability would be sampled with the ensemble of opportunities

e Here we show that this assumption may not hold because climate models do not have the same internal
variability

e | ocal sea-level rise can deviate considerably from the global mean sea-level rise (e.g.
Cazenave and Moreira, 2022)

e Accurate projections are needed as coastal areas are densely populated

e Future sea-level Is estimated using coupled climate models and come along with

large uncertainties notably due to: © model differences
o model sensitivity to the radiative forcing

o internal variability spontaneous fluctuations of
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3/ Data & methods

> Data from 7 climate models

Figure 2: tide gauge stations used in this study
o 30 historical simulations / model

o Within a single model ensemble, the historical simulations:
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Figure 3: Observed (black curve) and simulated (colored curves) sea level anomaly in Brest (o). Each simulated o Esr:ﬂlﬁffs -0.5 ©
seq level is based on a separate climate model, the plain lines are the ensemble means (30 members per CanESMS - J=
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trends (b) for each climate model (colored kernel density estimates), and observed trend (black vertical line).
Figure 4: Standard deviation of the simulated sea level trends at each tide gauge station (x-axis) and for each simulated sea level based on
separate climate models (y-axis). The vertical line between stations 25 and 26 indicates the separation between the west side and the east
side of the North Atlantic basin (see Fig. 1)

e The simulated sea-level time series represent the observed time series within the 20 range
(Fi1g. 3a)

e Yet, the distribution approach show that the models have different forced trends (mean
(b) of the distributions) and sterodynamic internal variability (shape and width of the
distributions) (Fig. 3b)

e Sterodynamic internal variability on the west side of the basin is large according to the CNRM-CM6-1 model
e Internal variability is model and location-dependent
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