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Fig. 1: Trout fish, Sagehen Exp. Forest,

Fig. 2: Conceptual diagram of historical daily SWT estimation model TempEst 2

Sierra Nevada, California, USA Fig. 4. Examples of TempEst 2-FAST input datasets - elevation (A), land surface temperature (B;
training gage and humidity datasets . blank areas were blocked by clouds), river mask (C), and the spatial model component for the
Model estimates stream temperature across CONUS spring /summer seasonality coefficient (D)
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