BACKGROUND

- Motivation: stream water temperature (SWT) is fundamental to understanding ecological needs (Fig. 1) and water quality issues
- •SWT models provide ≤ 10 -km/daily resolution estimates for ungaged streams at regional to global scale, but not high-resolution (1-km/daily) datasets for subcontinental scales, e.g., the contiguous United States (CONUS)
- Current high-resolution, subcontinental-scale models are not optimized for large-scale gridded processing, emphasizing point predictions instead
- **OBJECTIVES**:
- -Optimize an existing high-resolution, ungaged, remote-sensing SWT model (TempEst 2) for large-scale, gridded application (TempEst 2-FAST: "stream temperature <u>estimation</u>, version <u>2</u>: <u>fast analysis in space and time</u>") -Develop a gridded, 1-km/daily estimated SWT dataset for the CONUS
- TempEst 2: across gages, median validation RMSE 2.0 °C (Fig. 3), R^2 0.94, NSE 0.91, bias 0.1%
- TempEst 2 uses globally-available inputs (tested with varying climate, geography, and training gage network density), supporting global application with replacement training gage and humidity datasets

Fig. 1: Trout fish, Sagehen Exp. Forest, Sierra Nevada, California, USA

METHODS FOR GRIDDED SWT MODELING W/TEMPEST 2-FAST

- Export model components from trained model ($\sim 1,300$ USGS gages)
- Retrieve CONUS-wide inputs & convert to 0.01-degree (\sim 1-km) grid
- Mask inputs to MERIT Hydro hydrography for ease of use, computational efficiency, and smaller output dataset
- Apply geostatistical model to estimate SWT coefficients (seasonality & weather sensitivity; Fig. 2) for each pixel
- Compute full estimated SWT timeseries for each pixel
- Final version will be available as open-source Python package

 \leftarrow EGU25 poster QR code | TempEst models and research

A REMOTE SENSING-BASED DAILY STREAM WATER TEMPERATURE MODEL FOR GRIDDED, HIGH-RESOLUTION PREDICTIONS AT SUBCONTINENTAL SCALES [EGU25-4506: A.44]

Daniel Philippus (dphilippus@mines.edu), Claudia R. Corona, and Terri S. Hogue Hydrologic Science and Engineering Program and Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA

Model estimates stream temperature across CONUS

Fig. 3: Testing RMSE for gages (limited to 5 °C) w/EPA Level I Ecoregions

IMPLEMENTATION PROGRESS AND NEXT STEPS

- Next steps: predict coefficients and full timeseries

Fig. 4: Examples of TempEst 2-FAST input datasets - elevation (A), land surface temperature (B; blank areas were blocked by clouds), river mask (C), and the spatial model component for the spring/summer seasonality coefficient (D)

CONCLUSIONS

- and gridded SWT dataset for full CONUS
- variability)
- observation networks

ACKNOWLEDGMENTS

with The University of Alabama (NA22NWS4320003).

• All input data (Fig. 4; ~ 1.5 TB) downloaded and regridded • Coefficient estimation and prediction logic implemented

• First high-resolution, grid-optimized, subcontinental-scale ungaged SWT model

• Thermal regime coefficients (seasonality and sensitivity) can be analyzed directly and more efficiently to study river characteristics (e.g., mean SWT, annual

• Potential to explore large-scale spatiotemporal trends without dependence on local

Funding for this project was provided by the National Oceanic & Atmospheric Administration (NOAA), awarded to the Cooperative Institute for Research to Operations in Hydrology (CIROH) through the NOAA Cooperative Agreement