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A B S T R A C T   

Increased frequency of extreme urban heat and its exposure to urban populations is one of the challenges pre-
sented by climate change, especially in urban clusters. Due to the rapid but unequal development, heat exposure 
disproportionately increased in the underdeveloped regions compared to the developed regions in urban 
agglomeration. To address this issue, it is crucial to clarify the spatial pattern of heat health risk (HHR) inequality 
for urban heat resilience. However, analyses for the disparity of HHR inequality often used a single scale, 
neglecting important spatial context effects at other scales. Moreover, the rationale of HHR inequality remains 
unclear. Here, we took the well-developed and highly urbanized Yangtze River Delta (YRD) region as a case study 
and employed multiscale approaches to examine how and why the HHR inequality varied at and within the 
regional scale. We first assessed HHR using a comprehensive assessment framework at a 1 km grid level. Then, 
we quantified the inequality between regions using local Moran’s I and KS distance. Therefore, we utilized the 
Gini coefficient and Bayes quantile regression to quantify inequality and identify its drivers within the regional 
scale. Finally, we proposed a conceptual framework to inform policymaking in regions with different patterns of 
multiscale equality. Our results found that the HHR in YRD exhibited significant spatial inequality at the regional 
scale (Moran’s I = 0.562, P < 0.001) and within the regional scale (Gini coefficient: 0.27–0.54). Higher popu-
lation concentrations and building densities often led to higher HHR. In high HHR areas, intra-regional 
inequality was often lower due to high and coordinated socioeconomic levels (Gini coefficient: 0.27–0.34). 
Additionally, in areas with low and medium levels of risk, healthcare resource availability and local temperatures 
had a greater impact on intra-regional inequities, which varied at different levels of inequality. This study 
contributes to a better understanding of multiscale HHR inequality, which helps optimize heat risk management 
strategies and regional sustainable development.   
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1. Introduction 

Climate change is causing an increase in global temperature, exac-
erbating the occurrence of more frequent and severe extreme heat 
events (EHEs) (Alizadeh et al., 2022; Hess, 2023). It has been demon-
strated that intense and longer-lasting EHEs have become one of the 
deadliest natural hazards. The increasing EHEs have negative impacts 
on the heat-related health of urban residents, raising their heat health 
risk (HHR) (Mora et al., 2017; Venter et al., 2023; Wang et al., 2023). 
These impacts include impaired physical and mental health, human 
discomfort, and heat stress-driven diseases that can worsen cardiovas-
cular, diabetic, and respiratory conditions (Estoque et al., 2020). Thus, it 
is critical to consider the population’s heat-related health conditions, 
evaluate the HHR, and identify urban areas with high exposure to HHR 
for risk profiling, adaptation planning, and developing mitigation stra-
tegies. Therefore, an accurate and comprehensive characterization of 
the spatial distribution of heat health risk (HHR) and its multifaceted 
association with environmental and socioeconomic status is essential to 
protect residents’ health and promote environmental justice in urban 
agglomerations. 

HHR assessments are key to understanding urban heat and adapta-
tion planning, providing spatial clarity on who, where, and to what 
extent is at risk (Ellena et al., 2023). This helps us to fully understand the 
different patterns of spatial distribution of HHR and helps 
decision-makers to develop appropriate strategies (Estoque et al., 2020; 
Wang et al., 2024). Previous researches are mainly based on the risk 
assessment framework in the Intergovernmental Panel on Climate 
Change (IPCC) Sixth Assessment Report (Parry, 2007; Pörtner et al., 
2022), which quantitatively characterizes the spatial distribution of 
HHR in terms of hazard, exposure, and vulnerability. Recent studies 
have shown significant differences in residents’ resilience and adapt-
ability to extreme heat due to regional imbalances in development 
(Alizadeh et al., 2022; Venter et al., 2023). Spatial inequality results in 
varying HHR for populations in different regions, particularly in urban 
agglomerations with rapid and uneven development. This increased 
HHR is leading to a disproportionate burden of disease. Immediate ac-
tion is required to decrease disparities in heat-related health risks and to 
establish health interventions at multiple levels, from the individual to 
the regional level, to curb this looming crisis (Fernández and Wu, 2016; 
Renteria et al., 2022). 

Existing literature showed that HHR inequality is on the rise due to 
climate change, which is considered a significant environmental justice 
concern (Alizadeh et al., 2022), particularly in urban systems. Venter 
et al. (2023) found that individuals with lower incomes have less access 
to green space and are more vulnerable to heat, as evidenced by the 
spatial inequality of heat stress in Oslo, Norway. At the country scale, 
Alizadeh et al. (2022) demonstrated that heatwave exposure has 
disproportionately increased in the lowest-income regions compared to 
the highest-income regions. In addition, Lee H. et al. (2023) revealed 
that people outdoors, especially road workers are more susceptible to 
heat stress and face a high heat-related health risk due to the high ra-
diation from concrete and asphalt roads from a local perspective. 
Similarly, Lee S. et al. (2023) investigated the relationship between 
perceived temperature and heat-related health risks considering the 
impact of concrete pavements. Although these studies have explored the 
inequality of HHR and the differences between their influencing factors, 
the analyses are often carried out using a single scale and drawing on 
readily available administrative spatial units, which can neglect the 
multiscale contextual correlations of risk inequality. In addition, spatial 
inequality and its effects cannot be fully understood by simply taking a 
single scale into account. Moreover, it is important to note that con-
clusions may vary depending on the scale of analysis. Petrović et al. 
(2022) have shown that the environmental risk analysis is often affected 
by the modifiable areal unit problem (MAUP), which highlights that 
different spatial scales capture different spatial processes. These findings 
raise the concern that a universal model and single-scale geospatial 

correlation index, such as geographically weighted regression (GWR) 
and Morans’ I, which assume all processes operate at the same spatial 
scale, may not be appropriate in analyzing heat-related risk inequalities 
(Ho et al., 2015; Song et al., 2021). Additionally, previous research 
proposed that multiscale GWR and a combination of multiple scale 
geospatial correlation index allowed for the modeling of the effects of 
various variables, each of which varies at a specific spatial scale, 
simultaneously (Guan et al., 2023; Song et al., 2021). Conclusions based 
on the analysis of phenomena at a single spatial scale may not be 
spatially transferable, leading to potential misguidance in policymaking. 
Therefore, analyzing the inequality of risk at multiple spatial scales is 
necessary to provide accurate and reasonable references for local 
policymaking. 

Some researchers analyzed the distribution of heat risk and its po-
tential spatial influences on response and adaptation processes (Dia-
lesandro et al., 2021; Ebi and Hess, 2020). They quantified the 
inequalities and made policy recommendations to promote regional 
HHR equality, improve urban resilience, and enhance resident 
well-being. For instance, Mohajerani et al. (2017) and KIM et al. (2019) 
pointed out that due to the relatively low albedo of AC compared to 
other pavement materials, AC pavements tend to have extremely high 
temperatures in summer climates and are considered to be a significant 
contributor to the urban heat island, which further contribute to the 
unequally spatial distribution of urban landscape heating, and the 
associated environmental and public health impacts (Beaudoin and 
Gosselin, 2016; Shamsaei et al., 2022). Wu et al. (2023) found that 
greenspace had multifaceted associations with heat stress in terms of 
inequality measures. Renteria et al. (2022) demonstrated that the 
inequality of HHR would increase with higher proportions of racia-
l/ethnic minorities and people of lower socioeconomic status. However, 
the impact of the components of HHR itself, such as hazard, exposure, 
and vulnerability factors, on the unequal distribution of risk remains 
unclear, while no direct link has been established between these envi-
ronmental and social influences and risk equality. In addition, urban 
agglomerations often have complex, multilevel, and nonlinear risk dis-
tributions (He et al., 2022; Mitchell and Chakraborty, 2015). Linking 
environmental and socioeconomic factors to the average equality level 
based solely on administrative boundaries at a single scale may lead to 
erroneous judgments. Previous studies have shown that the relationship 
between environmental justice and socioeconomic status varies 
depending on the level of equality (Guan et al., 2023; Sun et al., 2019). 
Therefore, it is necessary to investigate the impact of indicators on HHR 
equality at different quartiles of intra-regional equality levels in a 
multiscale context, considering multilevel differences within the urban 
agglomeration system. 

In summary, previous studies have not analyzed HHR inequality 
from a multiscale perspective. To address this issue, it is critical to figure 
out the multiscale pattern of HHR inequality for urban heat resilience. 
Therefore, this study takes the well-developed and highly-urbanized 
Yangtze River Delta (YRD) as a case study and first examines the mul-
tiscale HHR inequality in such a mega-urban agglomeration at a 1 km 
grid level. Then, spatial autocorrelation and statistical methods are 
employed to interpret the relationship between HHR inequality and 
environmental and socioeconomic characteristics at and within the 
regional scale. 

To better understand the spatial extent of HHR inequality, this paper 
considers multiple spatial scales, including macro, meso, and micro 
scales. It is important to note that these scales are not uniformly defined 
and must be contextualized within a specific scenario. In our case study 
on HHR in the YRD, we defined the macroscale as the regional and city 
scales. The districts and counties within the city were considered the 
mesoscale, and the micro-scale was defined as the smaller-scale units of 
communities and neighborhoods. At the macroscale, we quantified the 
inequality between regions using local Moran’s I and KS distance. At the 
mesoscale, we utilized the Gini coefficient and Bayes quantile regression 
to quantify inequality and identify its drivers within the regional scale. 
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This study aims to investigate the environmental justice of HHR and its 
drivers in the YRD: (1) quantify the HHR and determine where heat 
health risk inequality may exist; (2) examine the multiscale HHR 
inequality based on spatial and statistical methods; and (3) explore the 
multifaceted associations between multiscale heat health risk inequality 
and environmental, demographic and socioeconomic characteristics to 
provide insights into urban environmental justice at both the regional 
and intra-regional scales from such a mega-urban agglomeration. 

2. Materials and methods 

2.1. Study region 

The Yangtze River Delta is a vast metropolitan area located on the 
eastern coast of China (Fig. 1). It spans from 114.88◦E to 122.83◦E 
longitude and from 27.14◦N to 35.13◦N latitude, covering 358,000 
square kilometers and encompassing 303 districts and counties in 41 
cities. This region is one of the world’s largest metropolitan areas, with a 
total population of 223.59 million people in 2017 (Zhong et al., 2017). 
The YRD urban agglomerations have undergone significant economic 
development and experienced tremendous growth in their urban pop-
ulation and urbanized areas due to rapid urbanization over the past 
several decades (Gao et al., 2023). It has played an important role in 
China’s economic and social development. 

The landscapes of YRD in the eastern and northern regions are plain 
landforms, while the south is characterized by hills. The YRD is mainly 
situated in the central subtropics and experiences a humid monsoon 
climate. The long-lasting influence of the West Pacific Subtropical High 
poses threats such as frequent extreme summer heat events in the YRD. 
In the context of climate change, urbanization is expected to increase the 
frequency of annual heat wave days in major metropolitan areas of the 
YRD, resulting in elevated levels of heat stress (Zhong et al., 2017). 
Recent studies have shown that urbanization and climate change have 
measurable effects on urban heat inequality (Todeschi et al., 2022; Wu 
et al., 2023). The large population and hot summers have led to serious 
heat-related health problems in this region. 

2.2. Data and pre-processing 

2.2.1. Geo-information data 
To describe the heat hazard, meteorological observation data were 

obtained from the National Meteorological Data Center (http://data. 
cma.cn/data/weatherBk.html). These data were measured by auto-
matic weather stations, comprising daily observation data from 269 
stations in the YRD from June 1 to August 31, 2017, including daily 
near-surface maximum and minimum air temperatures (Ta). Addition-
ally, the Moderate-resolution Imaging Spectroradiometer (MODIS) daily 
land surface temperature (LST) products (MOD11A1) with 1 km × 1 km 
(Wan et al., 2015), and ERA5 reanalysis data with 0.1◦ × 0.1◦ were 
collected (Copernicus Climate Change Service (C3S), 2017), which 
include the land surface skin temperature (Tskin), air temperature at the 
2-m altitude (T2m), soil temperature (STL), wind speed at the 10-m 
altitude and surface pressure (SUP). Furthermore, we performed the 
filling of missing MODIS LST values based on machine learning ap-
proaches, using the relevant auxiliary variables such as Tskin from ERA5 
as the independent variable and the high-quality LST acquired under 
clear sky condition as the dependent variable (more details were pro-
vided in supplementary material). 

Two auxiliary data, the digital elevation model (DEM) and land-use 
and land-cover (LULC) were also collected from the Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER) (NASA/-
METI/AIST/Japan Spacesystems And U.S./Japan ASTER Science Team, 
2009) and Finer-Resolution Observation and Monitoring of the Global 
Land Cover (FROM-GLC) project (Gong et al., 2013), respectively. 

To obtain a more accurate exposure indicator, MODIS enhanced 
vegetation index data (EVI) (Didan, 2015) and VIIRS Nighttime light 
(NTL) data (Román et al., 2018) were collected and then a population 
spatialization method was used to obtain gridded population density 
with 1 km × 1 km based on NTL data and auxiliary data. 

Road network data and healthcare points of interest (POI) data were 
collected from Open Street Map (OSM) and Amap (lbs.amap.com), 
respectively. The availability of medical resources was measured using 
the cumulative distance tool in ArcGIS software. 

2.2.2. Statistical data 
The study also obtained county-level socioeconomic data from the 

Fig. 1. Study region.  
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2017 statistical yearbooks of Shanghai, Zhejiang, and Jiangsu provinces, 
as well as some local statistical bureaus. The data include the resident 
population, proportion of elderly population, number of healthcare fa-
cilities beds, government budget revenue, disposable income, and GDP 
per capita of the 303 districts and counties in the YRD. 

More details regarding the data processing can be seen in the Data 
Section in the supplementary materials. 

2.3. Heat health risk assessment 

The effects of climate extremes on individuals depend on the severity 
of the extremes, as well as their exposure and vulnerability. To 
comprehensively assess the risk of heat-related health issues, we utilized 
the conceptual framework proposed by the IPCC (Parry, 2007; Pörtner 
et al., 2022) to combine heat hazards (H), human exposure (E), and 
vulnerability (V) factors. Therefore, the Heat Health Risk Index (HRI) 
was calculated by multiplying three equally weighted risk components 
to quantify the HHR (Cutter and Susan, 2006; Estoque et al., 2020; Koks 
et al., 2015; Wang et al., 2023), as shown in Eq. (1). The spatial distri-
butions of the three factors were mapped and analyzed at the 1 km grid 
level. The overlap of these three factors for urban heat health risk allows 
for the identification of pixels with a high level of risk (see Fig. 2). 

HRI=HHI × HEI × HVI (1)  

where HRI, HHI, HEI, and HVI represent the heat health risk index, the 
heat hazard index, the heat exposure index, and the heat vulnerability 
index, respectively. 

All the indicators subcategorized in H, E, and V factors were first 
positively transformed and Z-score standardized into the range of 0–1, 
and then combined to derive HHI, HEI, and HVI based on subjective 
(expert score) and objective weight (entropy weight), respectively. 

2.3.1. Hazard 
Heat hazard refers to the distribution of hazards resulting from EHEs 

that may cause loss of life, injury, or other health impacts. To measure 
the human perception of heat more appropriately, heat hazard was 
represented as the retrieved near-surface air temperature, which was 
obtained based on the meteorological observation station data, the gap- 
filled LST data, and related auxiliary data. Machine learning methods, 
specifically gradient boosting decision tree (GBDT), RF, and eXtreme 
Gradient Boosting (XGBOOST) models, were chosen for modeling. The 
dependent variables were the daytime maximum Ta (Tmax) and night-
time minimum Ta (Tmin) from meteorological station data, while the 
independent variables included gap-filled LST, EVI, elevation, and SUP 
from MODIS, ASTER DEM, and ERA5 products. The optimal models 
applied to retrieve daily Tmax and Tmin were selected based on ten-fold 
cross-validation and the coefficient of determination (R2). Based on 
the retrieved air temperature, a hot day is defined as a day with a Tmax 
greater than 35 ◦C, and a heat wave event is defined as defined as an 
extreme heat event with Tmax over 35 ◦C for 3 or more consecutive days. 
To quantify the heat hazard, the following four indicators: (i) daily Tmax, 
(ii) daily Tmin, (iii) The number of hot days, and (iv) the frequency of 
heat wave events were selected. (more details were provided in the Data 
and Method Section of supplementary material). 

2.3.2. Exposure 
Human exposure refers to the presence of people who are likely to be 

adversely affected by EHEs and their living environment during the 
hazards. In this regard, we used both population density and vegetation 
coverage (EVI) as indicators of exposure given that both have been 
widely used in existing studies (Huang et al., 2023; Wu et al., 2024). In 
addition, to obtain gridded population density, a model was developed 
first using NTL, LULC, and auxiliary data as input variables to estimate 

Fig. 2. Technical flowchart.  
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the county-level population density. The fitted model was then applied 
to the 1 km spatial variables to spatialize the population density. The 
estimated gridded population density was corrected based on statistical 
data to ensure consistency with the statistical population at the county 
level (more details were provided in the supplementary material). 

2.3.3. Vulnerability 
Heat vulnerability refers to the capacity of hazard-affected pop-

ulations to cope with the hazard and their sensitivity or susceptibility to 
harm. Six indicators derived from socioeconomic and demographic 
statistics were utilized to measure vulnerability: (i) elderly population 
(Huang et al., 2023; Zhu and Yuan, 2023), (ii) socioeconomic status 
(Burke et al., 2015; Sun et al., 2022), (iii) income (Adams et al., 2022; 
Wu et al., 2024), (iv) medical resource condition (He et al., 2019; Zhang 
et al., 2019), (v) infrastructure condition (Ellena et al., 2023; Inostroza 
et al., 2016), and (vi) governance capacity (Cheng et al., 2021; Niu et al., 
2021). The elderly population was defined as the percentage of people 
65 years of age or older. The socioeconomic status and income were 
quantified by the GDP per capita and the disposable income of residents, 
respectively. Medical resource condition refers to the availability of 
medical resources, which is measured by the cost of walking time to the 
nearest medical site. The infrastructure condition and governance ca-
pacity were quantified as the number of beds in public health facilities 
and public financial budget revenue, respectively. 

More details of the indicator selection and process can be seen in the 
Data and Method Section in the supplementary materials. 

2.4. Examining the HHR inequality at the regional scale 

We employed both spatial and statistical methods to analyze the 
spatial distribution of HHR inequality and explore its multifaceted as-
sociation with the 12 indicators used in the HHR assessment framework. 

First, to examine the differing distributions of HHR inequality, we 
used a local analysis to explain the presence of similar neighborhoods. 
We employed univariate local Moran’s I, which is an effective method 
for detecting the hot spots or cluster areas of environmental exposure 
inequality based on spatial autocorrelation theory. This helped us 
determine the local spatial distribution of hot spot and cold spot areas of 
mean HRI values at a regional scale. Moran’s I index calculates the 
difference between the target and the mean for all values, with a range 
between − 1 and 1 (Mitchell and Chakraborty, 2015; Wong et al., 2016). 
A positive value indicates that spatial objects have similar neighbors (i. 
e., high values near high values; low values near low values), while a 
negative value indicates the opposite. If the values tend to be random 
spatially, the index will be near zero. Therefore, we considered ‘High--
high’ areas to be high-risk areas of spatial inequality. 

Second, to explore the relationship between HHR inequality and the 
environmental and socioeconomic indicators, we considered the HRI 
into five inequality levels based on the spatial autocorrelation result: 
High-high (HH), High-Low (HL), No significance (No Sig.), Low-high 
(LH) and Low-Low (LL). We then used the Kolmogorov-Smirnov (KS) 
distance (Justel et al., 1997) to assess the variation of selected indicators 
across different levels. To measure sensitivity between different levels, 
we utilized this non-parametric statistical test. The K–S distance, which 
measures the sensitivity of differences in both the location and shape of 
data distributions (Langlois et al., 2012; Pianosi and Wagener, 2015), is 
used to indicate the similarity or difference of indicators across different 
inequality HRI levels and reveal the multifaceted association among 
them. 

2.5. Deriving the HHR inequality-indicators relationship within the 
regional scale 

In this section, we quantified the HHR inequality with the Gini co-
efficient and examined the quantile effect of environmental and socio-
economic status on HHR inequality. 

An inequality analysis of YRD within the regional scale was con-
ducted, considering temperature characteristics, environment, de-
mographic, and socioeconomic characteristics. The Gini coefficient 
(Dorfman, 1979) was calculated to quantify the inequality level of each 
subregion in the study area. The spatial Gini coefficient quantifies the 
curve distribution of HRI in a spatially explicit way. The Gini Index 
ranges from 0 (representing total equality) to 1 (representing total 
inequality), as shown in the Eq. (2): 

G= 1 −
∑

(qi +qi− 1)(pi − pi− 1), qi =
∑i

j=1
yj

/
∑n

j=1
yj, pi = i

/

n (2)  

Where i is an accumulative counter that counts by 1 from zero to n. qi is 
the cumulative proportion of one selected indicator at count i over the 
sum of that indicator of all raster pixels. pi is the cumulative proportion 
of areas over all areas at count i. n is the total number of raster pixels 
within the regional scale. 

Second, we applied Bayes Quantile Regression (BQR) to investigate 
the effects of HRI indicators on its equality and how these effects vary 
based on the level of spatial equality within regional scales. This analysis 
would reveal the cross-scale pattern of HHR inequality. In contrast, the 
classic ordinary least squares (OLS) regression only estimates the effect 
of the HRI spatial pattern on its equality at the average level, which may 
be biased by extreme values (Xu et al., 2019). Compared with OLS, BQR 
does not assume normality and allows the covariates to affect the entire 
conditional distribution rather than just the mean (Guan et al., 2023). 
This approach was used to assess the robustness of environmental 
research outcomes to changes in environmental exposure levels (Xu 
et al., 2019). The underlying assumption is that the effects of HRI in-
dicators differ between areas with relatively equal HHR distribution and 
those with extreme HHR disparity. It is necessary to note that BQR re-
sults do not provide p-values to indicate significance and the signifi-
cance of a variable depends on whether the distribution of coefficients 
within the confidence interval (CI) contains 0. So, we performed 5000 
iterations using the ‘bayesQR’ package in RStudio, removing the first 
100 iterations for stability and accuracy. Therefore, we used box plots of 
the coefficients to determine the significance of the relationship between 
the indicators and equality. Our model for the BQR analysis is shown in 
Eq. (3): 

Yi =αp
1x1 + αp

2x2 + αp
3x3 + ⋯ + αp

nxn + e (3)  

Where the dependent variable Yi is the Gini coefficient that represents 
HHR equality within each regional unit; the independent variable xn 

includes all indicators employed in HRI assessment, αp
n is the variable 

coefficient at the pth quantile, and e is the error term. 

3. Result 

To examine the multiscale spatial inequality of HHR, as quantified by 
HRI values in the results, we start by displaying the spatial distribution 
with the smallest available scale (1km × 1 km grid cells). We then 
introduce other scales to gain insight into how these various spatial 
patterns differ in terms of HRI and inequality levels and to demonstrate 
the impact of spatial scale on measuring inequality. Finally, we present 
the cross-scale patterns of the spatial inequality of HRI in the YRD. 

3.1. Spatial distribution of heat health risk and its components 

To provide an understanding of the spatial difference of the values at 
the pixel level, (a) heat hazard (b) human exposure (c) heat vulnera-
bility, and (d) the heat health risk index were produced, which were 
divided into 5 levels ranging from ‘Low (L)’ to ‘High (H)’ by Jenk natural 
break method. 

The heat hazard map (Fig. 3(a)) depicts the fragmented distribution 
of heat hazards. Considerable differences in the HHI spatial pattern were 
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observed. The coast of Hangzhou Bay had the highest HHI values, which 
corresponded to higher impervious surface levels. Conversely, the 
southwestern region of YRD had the lowest values. Additionally, Fig. 3 
(b) illustrated the distribution of human exposure based on population 
density and vegetation coverage, which was non-uniform and easily 
interpretable. City centers often have higher levels of exposure due to 
their high population density and lower vegetation coverage. Further-
more, Fig. 3(c) displays the spatial distribution of vulnerability factors in 
the YRD. To some extent, socioeconomic status could indicate the 
adaptability and resilience of residents to HHR. Due to the significant 
socioeconomic development gap between the western and eastern re-
gions, the western YRD region was highly vulnerable. 

The spatial pattern of the heat risk index in YRD is presented in Fig. 3 
(d), revealing significant spatial variation. The Shanghai-centered urban 
agglomeration, urban cities along with Hangzhou Bay (e.g. Hangzhou 
and Ningbo) and the prefecture-level urban areas of Jiangsu (e.g. 
Nanjing and Suzhou), Zhejiang (e.g. Taizhou and Wenzhou), and Anhui 
(e.g. Hefei and Wuhu) provinces had the highest HRI levels, which was 
attributed to high heat hazards and exposure. These metropolitan areas 
had high levels of HRI due to the concentration of urban development 

and high population density resulting from rapid urbanization. Addi-
tionally, the high HRI areas in the Jin-qu basin of Zhejiang were influ-
enced by specific topography, continuous hot weather, and poor 
socioeconomic status. In contrast, the central and southern regions of 
the YRD, which were primarily covered by forests and crops, were 
mainly low-risk areas. These areas were also affected by topography, 
land use, and sparse populations. 

3.2. Inequality between places 

The spatial distribution analysis of the HRI ‘hot spots’ and ‘cold 
spots’ revealed interesting patterns in the YRD. In Fig. 4, significant 
clustering of high HRI value areas was presented in the Shanghai- 
centered urban agglomeration, while low-risk areas were found in the 
western, middle, and southern parts of YRD (Moran’s I = 0.562, P <
0.001). These regions and their distinct clustering may indicate subur-
ban sprawl and densification of the impervious landscape. 

However, there were regional areas of high urban heat risk outliers 
that were surrounded by neighborhoods exhibiting lower urban heat 
risk. Identifying outliers presented a similar composition related to the 

Fig. 3. Spatial distribution of the heat health risk factors and index in the YRD. (a) heat hazard index; (b) heat exposure index; (c) heat vulnerability index; (d) heat 
risk index. 
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relatively denser built environment landscape, higher levels of urbani-
zation, and population concentration than surrounding cities at a 
regional scale. These spatial outliers of high urban heat risk existed in 
the city centers of Jinhua (in the mid-west of Zhejiang Province), Quz-
hou (in the west of Zhejiang Province), and Changzhou (in the southwest 
of Jiangsu Province), which were rendered as pink in Fig. 4. 

In addition to the local Moran’ I, which measured the spatial dis-
tribution of HHR inequality at a regional scale, the KS-distance statistics 
examined the variation across different areas of regional inequality. This 
interpretation could explain why HHR inequality shows the pattern in 
Fig. 4. The KS-distance matrix patterns suggested that certain indicators, 
including maximum and minimum temperatures, the number of 
extremely hot days, the frequency of heatwaves, and the availability of 
medical resources (Fig. 5 a-d, k), had less KS-distance value and less 
dissimilarity compared to the other indicators. Apart from this shared 
pattern, minimum temperature and availability of medical resources in 
HH areas differed considerably from LL areas (KS-distance = 0.64, p <
0.001 and KS-distance = 0.48, p < 0.001). 

On the other hand, the exposure indicators and the other vulnera-
bility indicators showed higher dissimilarity overall. For instance, at the 
bottom of the matrix of Fig. 5(g), the elder ratio indicator in the LL heat 
risk areas differed significantly from that in the HL heat risk areas (KS- 
distance = 0.46; p < 0.001), and this difference was shown as the risk 
level increases (from 0.6 to 0.84; p < 0.001). In addition to this, the 
indicator for GDP and number of care beds (Fig. 5 h-j) in the HL level 
heat risk areas were more distinct from those in the other level heat risk 
areas, which were located in the city center of Jinhua and Quzhou city. 
The spatial pattern suggested that both GDP and the number of care beds 
were concentrated in the city center, with less concentration in suburban 
areas, in the context of these two developing cities with poor economic 
conditions. This concentration partly contributed to a high HRI value 
surrounded by a low HRI value and a high KS distance between the HL 
level and other levels. 

3.3. Inequality within places 

The Gini coefficient ranged from 0.27 to 0.54, indicating an uneven 
distribution of HRI in the YRD. Half of the Gini coefficients were in the 
fourth quantile, indicating highly unequal HRI distribution in almost 
half of the areas within the regional scale. Fig. 6 showed the spatial 
distribution of the Gini coefficient. It revealed that the HRI distribution 
within regional units in the southwest YRD districts is extremely uneven, 
while the northeast YRD districts were comparatively more equal. 
Compared with Fig. 4, we could find that the unequal area located in the 
southwest YRD tends to have low HRI values within the regional scale, 
while the comparatively more equal area has higher HRI values, 
inversely. It could be explained in pixel level HRI map (Fig. 3(d)) that 
high HRI area equally emerged with high-level HRI both in the urban 
and suburban due to high-density building environment and cluster 
population at regional scale, with low intra-regional inequality. How-
ever, in developing areas such as Jinhua and Quzhou cities, where the 
socioeconomic level was relatively underdeveloped, the population and 
social resources were mainly concentrated in central urban areas. 
Despite a relatively low level of risk, this concentration led to significant 
intra-regional inequalities. 

The correlation between HRI indicators and the Gini coefficient 
varied at different equality levels (Fig. 7). Regarding hazard indicators, 
daytime maximum temperature had a negative effect on the Gini coef-
ficient at the 0.5 quantile and a little positive tendency at 0.25 and 0.75 
quantile; while nighttime minimum temperature had a negative effect 
on the Gini coefficient at the 0.25 quantile and 0.5 quantile. However, 
this effect lost its significance at the 0.75 quantile. The nighttime min-
imum temperature only significantly improved equality in areas with a 
higher equality level. Therefore, the number of extremely hot days and 
heat waves were not significantly correlated with HRI equality. 
Regarding exposure indicators, population density exhibited a negative 
trend across all quantiles, while the EVI showed a positive tendency on 
HRI intra-regional inequality. For vulnerability indicators, all socio-
economic indicators were not significantly correlated with HRI equality 
except the public health-related indicators. The availability of health-
care had a significantly positive effect on the Gini coefficient at the 0.5 
quantile and a positive tendency at the 0.25 quantile. This indicated that 
residents in medium-level intra-regional equality areas tended to have 
less equal availability of healthcare facilities. Furthermore, the number 
of care beds had a negative tendency at 0.5 and 0.75 quantile but did not 
show any obvious effects on the Gini coefficient at 0.25 quantile. 

3.4. Cross-scale patterns of HHR spatial inequality 

To compare different spatial contexts and explore the rationale of the 
cross-scale pattern of HHR inequality, we decomposed the comparison 
of the Gini index into the within-profile (cross-scale) inequality (Fig. 8), 
which compared the intra-regional inequality in the context of regional 
inequality. In different HRI clustered areas, there was huge spatial 
inequality between areas, which could be reclassified into three clus-
tered types according to Section 3.2, consisting of low level (LL and HL), 
medium level (No significance), and high level (LH and HH). In these 
three HRI levels, the availability of healthcare was the most significant 
indicator among all. In the medium-level areas, the availability of 
healthcare had a significant positive effect on the Gini coefficient at 0.75 
quantile and a positive tendency at 0.25 quantile. In the low-level areas, 
the effects of the availability of healthcare were only significantly 
negative at 0.5 quantile. It indicated the increase in the availability of 
healthcare can improve HRI equality within a regional scale with me-
dium equality and low HRI levels but might not be as effective as that in 
less equal and higher HRI areas. 

The maximum temperature had a negative tendency on intra- 
regional inequality in medium and high HRI level areas at 0.25 quan-
tile but had a positive tendency at 0.5 quantile in low HRI level areas. 
This means areas with higher temperatures indicated more equally 

Fig. 4. Spatial distribution of HRI cluster type measured by local Moran’s I (e. 
g. High-High means high-value clustering areas and Low-High means that 
outliers with low values are surrounded by high values. 
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distributed in higher HRI level areas but unequally distributed in low 
HRI level areas. However, the minimum temperature only had a little 
positive effect on the Gini coefficient in high HRI areas. Though not 
significant, the other indicators tended to have the same distribution 
pattern. The distribution of coefficients was more decentralized in low 
and high HRI level areas while more centralized in medium areas. It was 
indicated that these indicators had more possibility to influence the HRI 
intra-regional equality in low and high HRI areas than in medium-level 
areas. 

4. Discussion 

4.1. Spatial inequality in HHR: the issue of spatial scale 

In this study, we qualified the HHR and analyzed its multiscale 
spatial inequality between and within places. We employed the local 
Moran’s I and Gini coefficient to measure multiscale inequality in HHR 
at regional and intra-regional scales based on the results of the HHR 
quantification at a 1-km grid level. The results indicated that the mea-
surement of equality in HHR was greatly affected by scale, which in turn 
affects the analysis and comparison across regions. To understand HHR 
and the environmental injustice it causes, it is critical to make multiscale 
comparisons within and across regions. Policy responses to heat stress 
should not rely solely on regional-scale definitions while ignoring in-
equalities within individual cities. In addition to intra-city inequalities, 

there are also considerable inequalities between cities, and policy re-
sponses need to be contextualized (Petrović et al., 2022). Our work 
explicitly examined HHR and fostered the multifaceted association be-
tween indicators and multiscale HHR inequality. 

4.2. Effects of risk indicators on HHR 

The urban agglomeration with high HHI surrounding Shanghai ex-
periences the highest temperatures, which is due to the high degree of 
urbanization and the urban heat island effect (Supplementary Fig. S7 
(a)). The spatial distribution of heat waves is also heavily influenced by 
climatic conditions affected by subtropical high pressure in southern 
YRD. This area experiences the highest number of extremely hot days 
and the most frequent heat waves, up to 10 times during summer 
(Supplementary Figs. S7(c–d)), which contributed to the regional 
inequality of heat hazard and even the HHR. 

Additionally, a significant correlation is observed between vegeta-
tion distribution and urbanization levels (Supplementary Fig. S8). It is 
indicated that areas with high levels of urbanization have dense 
impervious surfaces and sparse vegetation, resulting in a low vegetation 
index. The areas with low vegetation index were concentrated in the 
Shanghai-centered urban agglomeration, which could typically charac-
terize the underlying environmental conditions. This metropolitan area 
exhibits higher exposure to EHEs due to the high-level urbanization and 
population agglomeration, which was the main contributor to the 

Fig. 5. The heat map shows the similarity of area with different inequality levels (measured by K–S distance) of all normalized indicators. The farther the K–S 
distance is, the more dissimilar the area with different HRI levels is. 
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regional and intro-regional inequality of HHR as well. 
Furthermore, the distribution of vulnerability indicators also had a 

significant impact on HHR at the regional scale (Supplementary Fig. S9). 
From the perspective of income and GDP, the high-value areas are on the 
developed southeast coast. Conversely, the areas with poor economic 
conditions are the northwest of Anhui Province. It demonstrated that the 
socio-economic characteristics were seriously polarized and regional 
development was uneven and unequal. In addition, the overall trend of 
the public financial budget shows a decreasing trend from the east to the 
west. Therefore, a quarter of the YRD has a high proportion of the aged 
population, including southern Jiangsu and Shanghai. As for medical 
resource conditions, the Shanghai urban agglomeration was character-
ized by an abundance of medical resources, a highly developed medical 
level, and high accessibility. Medical resources have a stronger corre-
lation with the local economic status and awareness of the importance of 
public healthcare than with economic-related indicators. 

4.3. The multiscale HHR inequality and environmental injustice 

Spatial measures and statistical analyses can reveal inequalities be-
tween and within regions at multiple scales, exposing a complex spatial 
structure within mega-urban agglomeration. For instance, at the meso-
scale, Shanghai has a high concentration of risk, while at the macro- 
scale, there is no significant risk inequality within the city. In contrast, 
the western YRD exhibits high-risk inequality at the intra-regional scale 
in areas such as Huangshan City and Lishui City due to their concen-
tration of population and socioeconomic resources. However, at the 
regional scale, the level of risk is lower due to their high green space 
coverage and low local temperature. This is consistent with the findings 
of Wu et al. (2023) at the city scale in the United States, which dem-
onstrates that greenspace has positive mitigating effects on heat stress 
and contributes to HHR spatial heterogeneities to a certain extent. 

The cross-scale analysis suggests that socioeconomic conditions 

Fig. 6. Spatial distribution of the Gini coefficient (This figure shows the Gini 
coefficient for each district in our study area. From red to green, the Gini co-
efficient decreases, and the equality level of heat health risk increases). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 7. Coefficient distribution of all HRI indicators at 0.25, 0.5, and 0.75 quantiles. The box plots show the distribution of all coefficients of indicators (95% CI). 
Blue, green, and red represent results at the 0.25, 0.5, and 0.75 quantiles, respectively. The dashed line is y = 0. All independent variables were standardized to 0–1. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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contribute to the inequality of HHR in the YRD at the regional level. 
Environmental and socioeconomic status have a greater negative impact 
on regions with medium or low levels of inequality and a smaller impact 
on regions with high levels of equality. Due to the higher socioeconomic 
conditions, development in the region is more coordinated, and city 
residents are less vulnerable to heat stress. However, social and medical 
resources in less developed regions are mainly concentrated in urban 
areas, resulting in varying levels of exposure and resilience among res-
idents. At the intra-regional scale, healthcare resource availability and 
the impact of localized temperatures are more significant, particularly in 
areas with low to moderate levels of HHR. In mega-city clusters, higher 
HHR caused by higher population concentrations and building density 
areas was often accompanied by lower intra-regional inequality due to 
high and coordinated socioeconomic levels. In areas of low and medium 
levels of risk, intra-regional healthcare resource availability and local 
temperatures have a greater impact on intra-regional inequities. This 
phenomenon may be unique to mega-city clusters. 

The varying changes in spatial scales not only demonstrate the 
MAUP issue but also emphasize that different spatial scales capture 

different spatial processes. This highlights the necessity of examining 
risk inequality at multiple scales. A single spatial scale is insufficient for 
informing policy. Instead, different scales collectively define various 
areas that may be at risk of exposure to high temperatures and require 
possible interventions. It is important to note that inequality patterns 
vary with scale, which also determines people’s behavioral patterns in 
the city. At the macroscale, people may migrate to other cities due to 
differences in temperature, regional income level, and socioeconomic 
conditions. At the mesoscale, residents may also migrate within a city 
due to differences in healthcare resources and living environments 
across different regions. This study can be used as a reference for 
studying the coupling between humans and cities in urban agglomera-
tion systems at multiple scales. It is expected to generate more interest in 
the analysis of human health risks at different scales. The use of multi-
scale analyses, ranging from macro to micro-environments, enables us to 
explore differences in risk across regions at a fine resolution, revealing 
more detailed spatial patterns than when using fixed single adminis-
trative boundaries. 

Fig. 8. Coefficient distribution of all HRI indicators in the different inequality level areas at 0.25, 0.5, and 0.75 quantiles. The box plots show the distribution of all 
coefficients of indicators (95% CI). Blue, green, and red represent results at the 0.25, 0.5, and 0.75 quantiles, respectively. The dashed line is y = 0. All independent 
variables were standardized to 0–1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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4.4. Strategies to improve HHR equality in diverse regions 

The multifaceted association between HHR inequality and its envi-
ronmental and socioeconomic indicators indicates the need for 
improved HHR equality strategies. Since the problem of HHR is 
complicated by regional and intra-regional factors, it implies that policy 
decisions should also be multiscale. As the conceptual framework, we 
proposed in Fig. 9, the HHR inequality patterns could be divided based 
on the level of HHR at the regional scale and the level of HHR inequality 
within the regional scale. 

Hence, these two dimensions delineate four quadrants of HHR 
inequality patterns that can be used for generating corresponding stra-
tegies to promote climate justice. Quadrant I, as the relative injustice 
and tough pattern, represents unequal and high HHR levels. Based on 
the results of sections 3.1 and 3.2, multiscale strategies would be needed 
for these regions, such as Quzhou and Jinhua. At the regional scale, the 
underdeveloped socioeconomic development and high concentration of 
population density are the main drivers. Regional cooperation and 
technological support from developed regions can be boosted to pro-
mote HHR equality at the regional scale. Additionally, within the 
regional scale, the unequal availability of healthcare facilities and high 
temperature may be the drivers of intra-regional inequality and socio-
economic development would be helpful to promote mesoscale HHR 
equality. Quadrant II is for unequal and low HHR pattern. The unequal 
pattern is dominant by the availability of healthcare facilities within the 
regional scale, which means more convenient and more balanced spatial 
distribution and planning of health facilities for residents would make 
these regions more just under urban heat threats. Whereas Quadrant III 
performs well in two dimensions, which is considered as the ideal 
pattern. It indicates that the residents here are exposed to equal and low 
distribution of HHR. In Quadrant IV, the region’s equal and high HHR 
pattern represents that residents are equally exposed to high-level urban 
HHR such as Shanghai. Despite high socioeconomic levels and abundant 
healthcare resources, residents are still exposed to equally distributed 
but high HHR due to population overcrowding. 

Like other urban clusters, the YRD has undergone significant land 
development and population growth in recent decades, which empha-
sizes the requirement for synergistic and sustainable development in the 
entire urban agglomeration. Solutions for high HHR areas vary 
depending on the inequality patterns. In Quadrant I, city administrators 

need to make more rational allocation and planning of public social 
resources such as increasing the equitable distribution of healthcare 
resources to reduce the intra-regional inequalities. Additionally, in 
Quadrant IV, it is important to increase the construction of fragmented 
green spaces due to the constraints of densely built environments while 
preserving the existing blue and green spaces (Guan et al., 2023; Venter 
et al., 2023). For quadrants II and III with low risk, it is necessary to 
preserve the existing natural environment and incorporate more equi-
table urban planning options into the urbanization process. At the same 
time, regional authorities should allocate resources at a macro-level to 
promote socio-economic development, including access to and quality 
of healthcare, especially in underdeveloped areas. 

4.5. Limitations and outlook 

This study also exhibits some limitations. First, in our multiscale 
study, we analyze risk inequality at macro, meso, and sub-meso (pixel 
grid) scales using Moran’s I Index and Gini index. The indexes captured 
the overall state of risk equality between regions and their relationship 
with individual environmental and socioeconomic indicators. If refer-
ence heat-related morbidity and mortality data are available in the 
future, more comprehensive geospatial models that require dependent 
variables, such as multiscale GWR, can be considered to validate and 
improve the reliability of HHR assessment results. Therefore, the geo-
spatial correlation index, such as the Getis-Ord Gi index, can be inte-
grated to describe the multiscale HHR inequalities. 

Additionally, we do not have a clear understanding of the effects of 
risk inequality at the micro-scale within each region, such as where it 
occurs and which neighborhoods or streets are affected by unfair risks 
(Renteria et al., 2022). There were two geospatial sampling processes 
involved in the calculation of HRI: upscaling (from high resolution to 
low resolution) and downscaling (the opposite). To capture the risk of 
inequality at the regional scale, we upscaled the fine data to 1 km, 
including NTL (from 100 m to 1 km), LULC (from 30 m to 1 km), and 
DEM (from 90 m to 1 km). Additionally, the socio-demographic statis-
tical data were downscaled from the county level to 1 km to match with 
the raster data due to the restricted statistical caliber of the data, which 
is only available at the district and county level. However, this down-
scaling process ignored the spatial variations of the socio-demographic 
and economic inequalities within the region to some extent. In the 
future, multi-source geographic information data could be integrated to 
spatialize socio-demographic indicators related to heat vulnerability, 
providing finer spatial details. 

Furthermore, spatial and statistical methods can be combined with 
community household-level survey analysis to explore populations that 
suffer from inequitable risk at the micro-scale (Petrović et al., 2022). For 
instance, White-Newsome et al. (2012) collected hourly indoor tem-
perature measurements and building characteristics of 30 different 
homes in Detroit to examine the differences in residence temperatures. 
To measure personal exposure at the community or finer scale, it is 
important to consider finer characteristics such as building types 
(Gilabert et al., 2021; Kuras et al., 2017; Quinn et al., 2014). 

Moreover, the use of regional-scale data in the quantitative frame-
work for high-temperature risk and the factors for socioeconomic in-
dicators in the factor analysis of equality impacts may be limited for 
more detailed equality analyses due to limited data availability (Niu 
et al., 2021). Qualitative but critical variables need to be considered and 
quantified in future research, including the underlying health condition, 
resident attitude and knowledge towards EHEs, and social cohesion ef-
fect on the elderly. In future research, multi-source data can be inte-
grated, including cell phone signaling data and the spatialization of 
socioeconomic indicators. This will enable us to obtain finer-scale so-
cioeconomic data at the community and street level, facilitating a more 
comprehensive analysis of inequality among residents at the 
micro-scale. 

Fig. 9. Cross-scale HHR inequality patterns and corresponding strategies to-
wards a more spatially equal development direction. Four HHR inequality 
patterns are divided based on two dimensions: level of heat health risk (x-axis) 
and level of inequality (y-axis). The level of inequality classifies regions ac-
cording to the HHR inequality within the regional scale, whereas the level of 
heat health risk reflects the HRI values at the regional scale. 
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5. Conclusion 

In this paper, we first quantified the HHR based on the multisource 
geo-information data and statistical data and then utilized the spatial 
autocorrelation method and statistical methods to examine the HHR 
inequality from macroscale to mesoscale. Moreover, we interpret the 
multifaceted relationship between HHR inequality with environmental 
and socioeconomic characteristics at and within the regional scale. Re-
sults showed that cities in YRD faced significant and unequal heat health 
risks, which presented a considerable challenge to protect people from 
heat stress and ensure equitable access to local heat mitigation measures 
at multiple scales. Specifically, higher HHR corresponding with higher 
population concentrations and building density areas are often accom-
panied by lower intra-regional inequality due to high and coordinated 
socioeconomic levels. Therefore, in areas with low and medium levels of 
risk, healthcare resource availability and local temperatures have a 
greater impact on intra-regional inequities, which vary at different 
levels of inequality. 

Inequality levels of HHR at the regional scale reflect regional 
development and macroscale climate conditions, while mesoscale con-
centrations of HHR inequalities within regions are related to city- 
specific environmental and socioeconomic characteristics. Investi-
gating and interpreting HHR inequalities at multiple scales is crucial as it 
can influence individual and regional development policies, as well as 
intra-regional social resource redistribution and social mechanisms. 
Based on cross-scale analysis, we propose strategies for addressing 
inequality with diverse patterns. Regional-level policies should consider 
that, in addition to within-city inequalities, there are significant dis-
parities between cities. It is possible that an effective intervention in one 
city may not be effective in another, even if they are both located within 
the same region and in close proximity. 

To the best of our knowledge, this is the first study to examine the 
multiscale HHR inequality and how its environmental and socioeco-
nomic indicators affect inequality in different scales. Our findings 
showed that heat risk inequality varied and was influenced by different 
HHR indicators across different scales. Therefore, we suggested plan-
ning recommendations that can promote equality of HHR inequality at 
and within regional scales. 
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