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� Soil mid-IR absorbance spectra were
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� The identified components are charac-
terized by concentration scores and IR
spectra

� A mechanistic model is used to link
scores of MCR-ALS components to soil
TOC values

� Success in modeling soil TOC content
depended on a threshold TOC level

� The detected threshold can help identify
different types of soil organic matter
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A B S T R A C T

A new approach based on mid-IR absorbance spectra is proposed for modeling total organic carbon (TOC) content
in soils. This approach involves a first-time bilinear decomposition of soil mid-IR absorbance spectra using
nonnegative multivariate curve resolution (MCR) with an alternating least squares (ALS) algorithm. An MCR-ALS-
derived component signifies a chemically meaningful combination of soil constituents. This new mechanistic
model has been developed to link the soil composition, expressed in terms of ratios of MCR-ALS-based concen-
tration scores of the identified components, to soil TOC value. Nonnegative MCR-ALS decomposition, performed
for 213 mid-IR absorbance spectra of soil samples collected in the north and south of Israel, yielded four com-
ponents. Fitting the mechanistic model-derived TOC to the experimental TOC values exhibited a TOC content
threshold that affected model performance. TOC content <1.0 % w w�1 was represented by the root mean square
deviation of 0.18% with 62% of the variance being explained, whereas for larger TOC values, a sharp decline in
model performance was observed. The existence of this TOC threshold in determining model performance sug-
gested that successful TOC modeling (below 1%) could be indirect and related to IR spectral fingerprints of
minerals binding soil organic matter (SOM) and forming organo-mineral complexes. Thus, a SOM fraction having
weak interactions with soil minerals was poorly accounted for in some soil samples. The dependency of the model
performance on soil TOC contents suggests that it might be possible to differentiate between soil samples based on
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their different dominating SOM pools, mineral-associated ones and those having weak interactions with minerals.
Further studies, especially in soils with high SOM content, are needed to validate our findings.
1. Introduction

Soil organic matter (SOM) is well-recognized for controlling soil
physical, chemical and biological properties (Baldock and Broos, 2012).
The content of total organic carbon (TOC) (or organic matter) was found
as the most frequently used property for characterizing soil quality,
among 27 indicators (Bünemann et al., 2018). The TOC content as a soil
health indicator is relevant to soil functions, practical for use and infor-
mative, however, it is not necessarily sensitive to respond detectably and
quickly to land use and management changes without reflecting
short-term variations (Lehmann et al., 2020). Hence, SOM fractions, such
as unprotected and mineral-protected SOM, that are potentially more
sensitive, were proposed to be among soil health indicators of a new
generation (Lehmann et al., 2020). These fractions also play different
roles in SOM turnover and carbon sequestration. Thus, SOM becomes
stabilized due to its interactions with minerals and reduced accessibility
(K€ogel-Knabner and Rumpel, 2018; Lehmann and Kleber, 2015; Just
et al., 2023) although further mineral-associated SOM may be destabi-
lized by plant and microbial exudates via multiple pathways (Li et al.,
2021). The majority of SOM in Earth's mineral soils is associated with
minerals thus affecting the whole cycling of terrestrial carbon (Sokol
et al., 2022). Hence, there is a fundamental interest in quantifying SOM
fractions, predicting soil TOC content, and understanding the relations
between SOM content and soil chemical composition.

Soil infrared (IR) spectra serve as fingerprints for soil composition
due to the vibrational activities of various chemical bonds present in
both soil minerals and SOM. Significant work has been done to model
and predict the content of TOC and SOM fractions using soil mid- and
near-IR spectra (Soriano-Disla et al., 2014; Madhavan et al., 2017;
Nocita et al., 2014; Zhang et al., 2018; Baldock et al., 2018; Lussier
et al., 2020; Nasonova et al., 2022; Margenot et al., 2023). Thus, based
on multiple studies (including those mentioned above), the capability
of mid- and near-IR spectroscopy, probing soil chemical composition, to
model and predict TOC content and SOM composition, is well estab-
lished (Terhoeven-Urselmans et al., 2006; Baldock et al., 2018; Ng
et al., 2022). It has also been recognized that for quantifying soil TOC
content, different types of soil IR spectroscopy may provide time- and
cost-effective approaches that are less laborious and cheaper than
conventional dry combustion analysis (Barth�es and Chotte, 2021;
Metzger et al., 2021; Li et al., 2022).

Partial least square (PLS) regressions (Wold et al., 2001) are
commonly used for modeling and prediction of soil TOC. Barra et al.
(2021) summarized predictions of multiple soil properties including TOC
content, using mid-, near- and visible-near IR spectroscopies, with
different multivariate techniques. Of the 90 publications examined by
Barra et al. (2021), 86 papers used the PLS technique (not necessarily
only) for prediction purposes. In the case of TOC predictions, the
empirical PLS regression models link carbon content values to latent
variables, which are linear combinations of IR absorbances determined at
multiple wavenumbers. Since the PLS predictors are linear combinations
of original descriptors (IR absorbances), and their loadings may be either
positive or negative, the interpretation of PLS models is far from simple
(Pirouz, 2010; Fritzsche et al., 2019; Xia, 2020; Lado et al., 2023).

Conceptually, a less empirical way to model TOC could be proposed
if, instead of creating latent PLS variables that best fit the TOC values, the
soil IR absorbance spectra would be expressed in terms of contributions
from chemically meaningful independent components characterized by
their spectra and specific sample-dependent concentration scores, i.e.,
performing so-called “mathematical chromatography” (Bro et al., 2010).
Separating soil IR absorbance spectra into the contributions of inde-
pendent components varying in their proportions in a sample series
2

represents a “mixture analysis problem” and fits the family of the
methods termed Multivariate Curve Resolution (MCR; de Juan and
Tauler, 2021) seeking a bilinear decomposition of the dataset into
component scores (“concentrations”) and loadings (spectra). It should be
kept in mind that this decomposition is “unsupervised” regarding the
sample TOC values of interest. For further use of IR spectra decomposi-
tion to model soil TOC, a mechanistic model needs to be developed that
links the soil composition expressed in terms of the component's scores to
the TOC value.

Although the decomposition of IR spectra of complex (and, particu-
larly, environmental) matrices into components' contributions is a diffi-
cult task, there are multiple studies demonstrating the potential of this
analysis. The MCR methodology with alternating least squares (ALS)
algorithms was applied to Fourier transform IR (FTIR) spectra to char-
acterize acid and salt forms of humic acids interacting with lead (Gossart
et al., 2003). It was also applied to decompose mid-FTIR imaging of wood
fibers, yielding three components that were identified as glucans, lignin
and hemicelluloses, very similar to reference spectra for these substances
(Araya et al., 2019). Câmara et al. (2022) used it to recover the kerosene
spectral profile from jet fuel mid- and near-IR spectra. Spectral and
concentration profiles of monodentate and bidentate glyphosate com-
plexes with ferrihydrite were identified using MCR-ALS of attenuated
total reflectance (ATR) spectra (Li et al., 2023). Furthermore, Ioannidi
et al. (2023) demonstrated the applicability of MCR-ALS to recover
contributions from crystalline and amorphous forms of fats in chocolate
using also ATR-FTIR spectra.

A decomposition of IR spectral data into the contributions of un-
known components and recovering their spectral loadings and con-
centration profiles is also possible using a similar technique of
Nonnegative/Positive Matrix Factorization (NMF/PMF, Paatero and
Tapper, 1994). Fritzsche et al. (2019) decomposed mid-IR spectra of
groundwater solids using PMF, providing the quantitative interpreta-
tion of PMF components (humic acid-coated goethite, kaolinite, mont-
morillonite, organic matter) without the a priori knowledge of the
sample composition. Russell et al. (2009) and Takahama et al. (2011)
characterized the composition of aerosols in terms of PMF components
derived from mid-IR spectra. Lado et al. (2023) performed an NMF
decomposition of mid-IR spectra of water-extractable organic matter
obtained from soils undergoing controlled heating in an oxidizing at-
mosphere and demonstrated the accumulation of oxidized organic
matter components. Recently, Borisover et al. (2023) examined the
sensitivity of soil chemical components identified with NMF of mid-IR
spectra to the treatments intended to minimize the negative conse-
quences of treated wastewater irrigation.

Bilinear decomposition using the MCR-ALS technique does not pro-
vide generally a unique solution (Bro et al., 2010) and may lead to scale
and rotation ambiguities. The former can be accounted for by scaling the
data, and the latter may be minimized by introducing nonnegativity (and
other) constraints, and/or its degree can be evaluated (Jaumot and
Tauler, 2010). Nonnegativity constraints are naturally expected when
decomposing spectra into physically reliable concentration scores and
spectral loadings of components since both concentrations and absor-
bance spectra of components cannot be characterized by negative values
(Jaumot and Tauler, 2010). Thus, the above-described potential of
MCR-ALS in decomposing datasets into the component's contributions
has driven our interest in applying this technique to soil mid-IR absor-
bance spectra.

Therefore, three specific objectives were pursued in this study: (1) to
develop a mechanistic model relating differences in soil composition,
identified by nonnegative bilinear decomposition (based onMCR-ALS) of
mid-IR absorbance spectra, to soil TOC content, (2) to identify the
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particular MCR-ALS-derived soil components by performing the analysis
of selected soil mid-IR spectra, (3) to test whether these derived soil
components combined within a mechanistic approach allow modeling
soil TOC content. To the best of our knowledge, there are no studies in the
literature that propose a physicochemical model linking soil components
quantified throughmultivariate decomposition of mid-IR spectra and soil
TOC content. Therefore, research involving these three objectives is
novel and potentially could contribute to better identification of C pools
and their dynamics in soils.

2. Methodologies and data sources used in model examination

2.1. Derivation of the mechanistic model

This section addresses the first objective of the research. Although soil
samples represent a complex matrix for spectral analysis, the applica-
bility of the Beer-Lambert law is generally (explicitly or implicitly)
accepted in soil and mineral IR spectroscopy (Johnston and Aochi, 1996;
Kaufhold et al., 2012). This is evident also in general practice to compare
the absorbance of different bands or a band and a reference signal using
the maximum height or the band areas (Davis et al., 1999; Margenot
et al., 2023). Then, MCR analysis can be considered an extension of the
Beer-Lambert law applied to a mixture of N identifiable components at
variable wavenumbers (Jaumot et al., 2005; de Juan and Tauler, 2021).
This relation between the physicochemical Beer-Lambert law and the
MCR of IR spectra highlights the potential merit of this decomposition for
modeling and prediction of TOC in soils; the MCR-based decomposition
may bring less empirical and better interpretable characterization of soil
IR spectra and their relations to soil TOC. However, it is important to
recognize that MCR-ALS-derived soil components do not describe
necessarily a particular chemical substance or minerals. A given
component represents a set of chemical bonds and functional groups, that
are active in the mid-IR range, present in a soil sample and maintain
constant proportions in a soil sample series. This means that an identified
MCR-ALS component reflects a chemically meaningful combination of
soil constituents; a set of the MCR-ALS components characterizes soil
composition.

The results of an MCR-based decomposition of absorbance spectra are
(1) a number (N) of estimated components i (from 1 to N); (2) the spectra
of the components, given as absorbance (LiðνÞ; in arbitrary units) vs
wavenumber ν; (3) sample-dependent scores Ci of each component i
(Jaumot et al., 2005; de Juan and Tauler, 2021). The product of Ci of a
component and its LiðνÞ is the absorbance Absi ðνÞ [¼ CiLiðνÞ] of the
given component that contributes to the whole measured sample absor-
bance Abs ðνÞ at a certain ν:

Abs ðνÞ¼
XN
i¼1

AbsiðνÞ¼
XN
i¼1

CiLiðνÞ (1)

Following the Beer-Lambert law,

AbsiðνÞ¼CiLiðνÞ¼ θiεiðνÞd (2)

where θi is a concentration of component i in a sample (e.g., in mass per
volume), d is the (possibly sample-specific) optical path length, and εiðνÞ
is the absorptivity of a specific component at wavenumber ν. From Eq. (2)
it follows:

Ci ¼ θiεiðνÞd = LiðνÞ (3)

For a given sample, the results of the MCR analysis may be presented
as ratios of the scores Ci of the components relative to a certain one, e.g.,
for the first component: Ci/C1 where i ¼ 1, 2, …N (for i ¼ 1, the ratio
equals one). Based on Eq. (3), each such Ci/C1 ratio is proportional to the
concentration ratio θi=θ1:
3

Ci

C1
¼ θi

θ1

εiðνÞ
ε1ðνÞ

L1ðνÞ
LiðνÞ (4)
θi
θ1

¼ ki;1
Ci

C1
(5)

The wavenumber-independent proportionality coefficient ki,1 in Eq.
(5) is specific for component i and does not change among samples (when
i ¼ 1, k1;1 ¼ 1):

ki;1 ¼ LiðνÞ
L1ðνÞ

ε1ðνÞ
εiðνÞ (6)

Based on Eq. (5), the whole mass concentration of all the soil com-
ponents in a sample is defined as:

XN
i¼1

θi ¼ θ1

 XN
i¼1

ki;1
Ci

C1

!
(7)

θ1

,XN
i¼1

θi ¼ 1

,XN
i¼1

ki;1
Ci

C1
(8)

The mass fraction ϕi of component i in the whole soil sample is as
follows:

ϕi ¼ θi

,XN
i¼1

θi (9)

From Eqs. (5), (8) and (9) it follows:

ϕi ¼ ki;1
Ci

C1

,XN
i¼1

ki;1
Ci

C1
(10)

Mid-IR spectra cover a variety of chemical bonds and functional
groups, and it is expected that major soil components are represented, to
different extents, in mid-IR spectra. Hence, one may find the total organic
C content (TOC) of a soil sample by summing the organic C contents (OCi)
of each MCR component weighed by its mass fraction ϕi:

TOC¼
XN
i¼1

ki;1
Ci

C1
OCi

,XN
i¼1

ki;1
Ci

C1
(11)

where TOC and OCi refer to the masses of the soil sample and component
i, respectively.

When MCR-ALS is applied to mid-IR spectra for m soil samples and
themodel suggestsN components, there areN�m known Ci

C1
ratios, andm

experimentally determined the TOC values (one for each soil sample).
The model (Eq. (11)) involves N unknown OC contents, one for each
extracted component, and (N-1) unknown values of ki;1 (since k1;1 ¼ 1Þ.
These 2N-1 unknown variables may be calculated by adjusting the model
to the TOC values of m samples. Hence, a successful fit could help in
understanding whether the MCR-ALS of the soil IR spectra properly
identified the soil components controlling TOC content.

To summarize, the model assumptions are the following:

1) MCR-ALS may find contributions of chemically meaningful compo-
nents to soil mid-IR spectra. This means that
- these components are not necessarily individual substances, but a
given component may include diverse constituents maintaining, for
different reasons, the same proportion across a sample series. Thus,
such an assemblage behaves like a substance with “constant
chemical composition".

- the contributions of such components to the soil spectra follow the
Beer-Lambert law.
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2) All TOC-controlling components may be identified within the MCR-
ALS-based decomposition of IR spectra.

2.2. The mid-IR spectra of soil samples

The soil mid-IR spectra examined in this work were collected by
Nasonova et al. (2022). These spectra represented 213 soil samples ob-
tained from Jezreel Valley and North-Western part of the Negev of Israel.
Jezreel Valley and North-Western part of the Negev are two important
agricultural regions characterized by different climate (Mediterranean
and semiarid, respectively) and precipitation, situated in the north and
south of Israel (Nasonova et al., 2022; Rinot et al., 2021). The soil sam-
ples were taken from three sites at each region and from two different
depths (0–10 cm and 30–60 cm), to provide soil samples of the same type
but differing in SOM quantity and (potentially) composition. Sampling
was carried out at both the end of the rainy season (Spring) and at the end
of the irrigation season (Autumn). The soil samples were also associated
with different land uses (orchards, field crops and non-cultivated plots
with natural vegetation). Variations in locations, climate, land use,
sampling depth and seasons were dictated by original interest in linking
soil mid-IR spectra to properties of soil extracts in a wide range of
environmental/land use scenarios (Nasonova et al., 2022).

Each type of soil sample was taken from three pits providing sample
triplications. The overall number of collected sampleswas 216 (2 regions�
3 sites� 3 land uses� 2 depths� 3 replicates� 2 sampling seasons). Only
213 mid-IR spectra were used in this work since the TOC values for 3
samples were lacking. Thus 213 mid-IR spectra were available for the
modeling.

More details regarding soil types, climate differences, sample distri-
bution and agricultural management are provided in Nasonova et al.
(2022). Soil characterization involved the determination of several
properties (Nasonova et al., 2022; Rinot et al., 2021). Table S1 (Sup-
plementary information) provides a summary of data on total nitrogen,
TOC, inorganic carbon (representing soil carbonates), cation exchange
capacity (CEC) and texture. It should be noted that looking for relations
between soil TOC contents and soil texture, CEC, carbonate contents and
climate regions was out of the scope of this work which is focused on
linking between a new way to decompose soil IR spectra and TOC
content.

The mid-IR spectra of soil samples (air-dried at room temperature)
were measured in transmission mode, in KBr pellets, using Bruker Tensor
27 FT-IR spectrometer, with a soil concentration of about 1% w w�1; the
wavenumber range was 4000–400 cm�1 with 4 cm� 1 resolution, and 16
scans per acquisition (Nasonova et al., 2022). Spectral corrections
involved atmospheric compensation and reducing the baseline slope of
the final spectrum using the software OPUS 6.5. IR spectra of soil samples
normalized by quartz absorbance signal (taken with permission from
Elsevier, from Nasonova et al. (2022)) are exemplified in Figure S1, that
shows averages of spectra of soils sampled in the north (Mediterranean)
and south (semiarid) regions. For the current MCR-ALS analysis, the soil
IR spectra after the “Min-Max” normalization performed with the OPUS
6.5 software were used; in this normalization, the maximal absorption is
assigned the value of 2.

2.3. Multivariate curve resolution (MCR-ALS) of mid-IR absorbance
spectra

To accomplish the second objective, the MCR-ALS analysis was per-
formed using the MCR-ALS GUI (Graphical User Interface) 2.0 toolbox
(Jaumot et al., 2015) within Matlab R2023a. The optimal number of
components was selected using the singular value decomposition (SVD)
algorithm. The initial estimations for component spectra and scores were
madewith a “purest variable” detectionmethod (Jaumot et al., 2015). The
fast nonnegative least squares algorithm was used for spectra decomposi-
tion (Bro and De Jong, 1997; Jaumot et al., 2015), with nonnegativity
constraints for scores andabsorbance loadings of the resolved components.
4

The resolved spectra profiles were normalized to have equal height (Jau-
mot et al., 2015), which helps to fix the possible intensity ambiguities. The
iteration stop criterionwas set at a convergence of 0.001 (i.e., reflecting the
percentage of change of standard deviation of residuals between two suc-
cessive iterations). Extents of the possible rotation ambiguities were eval-
uated for eachcomponent usingMCR-BANDS (Tauler et al., 2016),with the
same constraints as in theMCR-ALS. TheMCR-BANDmethod evaluates the
contributionof a certain component to thewhole signal for themixture ofN
components, and when the difference between the minimal and maximal
relative contributions tends to be zero, there is no remaining rotation
ambiguity (Jaumot and Tauler, 2010). Typically, this difference in the
MCR-ALS analyses was around 10�14. The quality of optimization was
characterized by (i) the standard deviation of residuals (root-mean-square
deviation, RMSD); (ii) the fitting error (lack-of-fit, Lof, in %) defined as

Lof ¼ 100
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j
e2i;j=

P
i;j
d2i;j

r
wheredi;j indicates absorbanceatwavenumber iof

a spectrum corresponding to sample j, and ei;j is the difference between
measured andmodeledabsorbancevalues; and (iii) the explainedvariance,
defined as 1-(Lof/100)2 and expressed in percentage. Different optimiza-
tion runs when repeated brought the same values of RMSD, Lof and the
explained variance. When mid-IR spectra of MCR-ALS-identified compo-
nents were compared between different decompositions, the degree of
similarity was evaluated using correlations between mean-centered ab-
sorbances of these spectra (Varmuza et al., 2003). Thus, the nonnegative
MCR-ALS decomposition of soil mid-IR spectra was performed without
targeting the soil TOCdata, being, therefore, unsupervised. Also, no a priori
knowledge of soil chemical composition is used in the spectra decompo-
sition although available data of actual soil components (i.e., mineral
composition, particular organic substances and their classes) could
potentially have some impact on the selection of the number of
components.
2.4. Fitting of the principal model to soil TOC values

The third objective of the research was to test whether the developed
mechanistic approach allows modeling soil TOC content, using the MCR-
ALS components derived from soil mid-IR spectra. To address this
objective, fitting of TOC content with Eq. (11) incorporating scores Ci of
MCR-ALS-identified soil components was performed using a nonlinear
estimation option in Statistica 7.0 Statsoft. It should be noted that
modeling the soil TOC values using Eq. (11) does not require per se
knowledge of mineralogical composition or identification of particular
organic compounds in SOM. It depends only on specific score values of
the components in Eq. (11). In the current stage of the research, no
predictive steps were pursued, but only the quantitative description of
the soil TOC content data was of interest. Therefore, verification of the
model's predictive strength with data separation into the training/test
sets was out of the research scope. For the soil TOC data modeling, the
parameters of Eq. (11) were sought by the software to minimize the loss
function. The minimized loss function was the sum of squared deviations
between experimental and fitted values, introducing penalties when the
values of adjustable parameters were negative or exceeded 100. In this
way, only physically meaningful positive values were assigned to the
model parameters. The penalties for the values exceeding 100 helped to
eliminate physically impossible organic C contents of the MCR-ALS
components (OCi) given in %, and strong dominance of some Ci

C1
ratios

in the model (Eq. (11)). Hence, when the optimal values of the model
parameters were found, the penalty did not contribute to a final loss
function. Fitting was repeated with 30 randomly generated combinations
of initial values of the adjustable parameters, varying from 0 to 100, to
ensure that a stable minimum of the loss function was reached. The
Hooke-Jeeves pattern move algorithm providing a fast optimization was
used for model fitting. Table S2 shows the results of 10 optimizations
starting from different initial values of adjustable parameters, thus
illustrating the stability of the optimization.
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3. Results and discussion

3.1. Decomposition of soil mid-IR spectra

The preliminary examination of 213 IR absorbance spectra of the soil
samples using the SVD plot (Jaumot et al., 2015) suggested that four
components explain the variability of the data. This model explained
99.7% of the variance, with a fitting error (Lof) of 5.88% and a standard
deviation of residuals of 0.037. When varying the number of the com-
ponents from 3 to 6 and plotting RMSD and Lof against the number of the
components (Fig. S2), there was a linear trend covering changes from 4 to
6 components. For a three-component decomposition, elevated RMSD
and Lof values, distinctly deviating from this linear association, were
found. Hence, four components were used for further analysis.

Mid-IR spectral loadings of the four components are presented in
Fig. 1, whereas the positions and assignments of absorbance maxima are
described in Table 1. Components 1, 2 and 3 differ in a specific combi-
nation of absorbance peaks associated with inorganic constituents such
as clay minerals, possibly, iron-containing phases (such as oxides and
oxyhydroxides), and organic matter. It is worth noting that among
components 1–3 (Fig. 1), component 2 is characterized by having the
strongest absorbance at 1435 cm�1, which together with distinct absor-
bance at 2515, and sharp peaks at 872 and 714 cm�1, indicates that this
component represents carbonate-rich materials. All the soil samples
Fig. 1. MCR-ALS identified mid-IR spectra of the four soil components that contribute
maximal value.

5

studied contained inorganic carbon commonly associated with carbon-
ates (the illustrative data are provided in the overview of soil samples in
Supplementary information, Table S1). When looking at the absorbance
at 1032 cm�1 and bands>3300 cm�1, component 3 seems to be enriched
as compared with component 1 by chemical bonds absorbing at 1032
cm�1. This suggests the enrichment of component 3 as compared with
component 1 with aluminosilicate Si–O bonds and the organic C–O/
C–O–C groups relative to the presence of diverse inorganic and organic
OH groups (Table 1). This further implies that components 1 and 3 are
essentially different organo-mineral complexes whereas component 3
seems to be more hydrophobic (with a lesser relative content of hydro-
philic OH groups) and possibly enriched by SOM. The fourth component
is characterized by absorbance bands similar to those found for compo-
nents 1–3 above 3000 and below 600 cm�1. However, in the 1000-2000
cm�1 range, the spectrum is complicated and exhibits more “noisy”
shapes, in particular, for absorbance in the 1500-2000 cm�1 range. It is
difficult to know why this less regular shape of absorbance appears here,
and whether it is caused by the ability of the MCR-ALS method to
separate the contributions from the IR-absorbing components, spectral
noise, or other non-accounted effects which may appear when using KBr
pellets, e.g., light scatter (Tesfamichael et al., 2001). Less regular
absorbance profiles in the 1000-1800 cm�1 range were found by Fritz-
sche et al. (2019) who examined mid-FTIR spectra of ground
water-derived solids in KBr pellets and applied PMF, an MCR technique,
to the whole soil mid-IR spectra. Spectra are normalized to unit absorbance at its



Table 1
Positions of mid-IR absorbance maxima (cm�1), with indicating a number of a
specific MCR component (in the parentheses) and their assignments.

Wavenumbers of positions of maxima
(or intervals), cm�1

Assignment

3698(2), 3620(2), 3622(3), 3632(4) O–H stretching in kaolinitea

3441(1), 3402(2), 3370(3), 3435(4) O–H stretching in phyllosilicatesb,
water, carboxyl and hydroxyl groupsc

2880(1), 2924(2), 2935–2929(4) Symmetric and asymmetric C–H
stretching of methyl and methylene
groupsd

2515 (1–3) Vibrations of CO3
2� in calcitee

1798(2), 1873(4) Overtones and combination bands in
quartz and silicatesf

1634(1), 1640(3) Asymmetric stretching of COO�g;
amide I (C¼O stretching) and II (NH
and NH2 bending) bandsh; OH-bending
of hydration water in phyllosilicatesi;
H-bonded C¼Oj; the conjugated C¼C
stretching in ketones, carboxylic acids
and amidesk;

1435(1,2), 1458(3) Vibrations of CO3
2� in calcitel; C–H

bending of methyl and methylene
groupsh

1337 (4) Symmetric stretching vibrations of
COO�g

1032 (1,3), 1030(2) Si–O stretching in aluminosilicatesb;
the C–O/C–O–C vibrations in alcohols,
phenols, carboxylic acids,
polysaccharides, carbohydratesd,m

714, 872–873 (1,2,4) Vibrations of CO3
2� in calcitee, iron

oxides and oxyhydroxidesn

523-540(1–4), 467–488(1-4),
420–453 (1,2,4)

Bending of O–Si–O bonds; vibrations
of AlO6-octahedral groupso; Si–O
stretchingb

a McKissock et al., 2003; Nguyen et al. (1991); Ravisankar et al. (2011);
Simkovic et al. (2008).

b Margenot et al., 2017.
c Ouatmane et al., 2000; Ellerbrock and Gerke (2004); Simkovic et al. (2008).
d Silverstein & Webster (1997); Ellerbrock and Gerke (2004); Simkovic et al.

(2008).
e Nguyen et al., 1991; Ravisankar et al. (2011); Tinti et al. (2015).
f Nguyen et al., 1991; Calder�on et al. (2011).
g Silverstein & Webster (1997); Hay and Myneni (2007).
h Silverstein & Webster (1997).
i Spaccini et al., 2001.
j Schnitzer, 1978.
k Silverstein & Webster (1997); Ellerbrock and Gerke (2004); Ellerbrock and

Kaiser (2005); Simkovic et al. (2008).
l Huang & Kerr (1960); Gunasekaran et al. (2006).
m Rumpel et al., 2001; Smidt and Schwanninger (2005); Tarchitzky et al.

(2007).
n Soriano-Disla et al., 2014.
o Fern�andez-Carrasco et al., 2012.
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for the decomposition of spectra. Of the seven IR light-absorbing com-
ponents identified by Fritzsche et al. (2019), two components, termed
“organic matter-like”, exhibited a more complex shape than the other
ones. Increasing the number of components in the MCR- ALS decompo-
sition seemed to lead to the appearance of noisy shapes also in spectra of
other constituents (data not shown) which supported our decision to use
just four components for further TOC modeling.

In summary, for the goal of soil TOC modeling, use of the MCR-ALS
methodology enabled the identification of four components (and
obtaining their concentration scores). These four identified components
were capable of providing the reasonable description of IR spectroscopic
signatures of soil composition.
6

3.2. Modeling the TOC contents of the whole sample set

The four MCR-ALS components contributing to soil mid-IR spectra
were incorporated into Eq. (11) to describe the TOC contents of all the
soil samples. Table 2 summarizes the statistics of this description and the
optimized values of the adjustable parameters. Only a small portion
(<27%) of the TOC variance of the whole dataset was explained, and the
RMSD value was quite large (0.54% w w�1). For comparison, an earlier
analysis by Nasonova et al. (2022) using the PLS regression with the same
dataset allowed to model the TOC values with an explained variance as
high as 76%. The RMSD based on the PLS regression modeling was
0.36% w w�1 (obtained from the statistical measures reported by Naso-
nova et al. (2022) and original experimental data). Hence, when
modeling TOC contents of the whole dataset, the commonly used PLS
regression was more successful as compared with the current method
based on the MCR decomposition. It is worth noting that for this dataset
the variance explained by the PLS regression was shown to be well within
the explained variance observed in a series of publications (i.e., 52–96%;
detailed in Nasonova et al., 2022).

To visualize the quality of modeling, the fitted TOC values were
plotted against the measured TOC values in Fig. 2a. Inspection of the
data distribution in Fig. 2a suggests that the MCR-ALS-based model
fails in soil samples with elevated TOC contents. This failure is
demonstrated when plotting the differences between the fitted and
experimental TOC contents against the experimental data (Fig. 2b).
Such a tendentious distribution of residuals is a clear indication of a
systematic failure, i.e., lack-of-fit, for a model TOCfit ¼ TOCexp (Draper
and Smith, 1968).

The clear trend of increasing deviations between experimental and
fitted TOC values with increasing TOC content in the soil samples de-
serves special attention. It suggests that in the samples with elevated TOC
contents, a portion of the SOM has weaker relations with measured soil
mid-IR spectra. One qualitative understanding of this apparently para-
doxical conclusion may result from the existence of SOM fractions in soil,
that interact differently with soil minerals, including, for example,
mineral-associated SOM as well as organic matter having less in-
teractions with minerals (e.g., particulate organic matter composed of
residuals from plants and microbes, black carbon). Soil inorganic com-
ponents have dominant contributions to soil mid-IR spectra, and there-
fore, the MCR-ALS decomposition intending to provide the best fit of IR
spectra accounts foremost for the mineral spectral signatures. Hence, if
these mineral components could be characterized by certain OC-holding
capacity (as is implied in Eq. (11)), the content of mineral-bound organic
matter in soil samples with lower TOC content would be better modeled
as compared to the case of elevated soil TOC contents. In the latter case,
the relation between minerals (and their pronounced IR spectral finger-
prints) and TOC becomes weaker, and, therefore, the fitting of the TOC
values becomes less successful. This explanation proposes that the ability
of soil mid-IR spectra to model TOC content using Eq. (11) was rather
indirect, at least, in part, and strongly affected by the association between
SOM and minerals.

Considering that the fourth component has a less regular spectral
profile that could be associated with spectral artifacts (Fig. 1; section 3.1)
and the fitted model showed zero OC content in this component
(Table 2), we have examined, therefore, the model performance when
the fourth component was omitted, i.e., using only three components of
the four-component model. The model parameters are summarized also
in Table 2, where it can be observed that the model performance, i.e., the
RMSD value and the variance explained, did not depend on whether four
or three components were incorporated into Eq. (11); this is a proof that
the fourth component had no impact on the TOC modeling for the whole
dataset.



Table 2
Parameters of models linking theMCR-ALS-derived scores of the mid-IR-active components to the whole soil TOC content (Eq. (11)). The ki;1 andOCi values are followed
with their standard errors (in parentheses); the p value if less than 0.1 is specified in the footnotes.

Component i

1 2 3 4 RMSD,
% w w�1

Variance explained, %

The whole dataset: Four components 0.539 27
ki;1 (unitless) 1 (�) 1.50 (3.16) 1.44 (4.83) 0.72 (5.8)
OCi;% w w�1 0.16 (0.74) 0.00 (0.32) 1.49 (0.86)a 0.00 (4.5)
The whole dataset: Three components (of the four-component model) 0.540 27
ki;1 (unitless) 1 (�) 1.34 (0.92) 1.13 (0.78) –

OCi;% w w�1 0.12 (0.28) 0.00 (0.22) 1.55 (0.21)b –

The “low” datasetc: Four components 0.175 62
ki;1 (unitless) 1 (�) 1.73 (2.17) 1.41 (1.72) 4.25 (5.82)
OCi;% w w�1 0.31 (0.16)d 0.15 (0.08) a 0.90 (0.08)b 0.00 (0.14)
The “low” dataset: Three components (of the four-component model) 0.181 60
ki;1 (unitless) 1 (�) 1.07 (0.55) 0.70 (0.30)d –

OCi;% w w�1 0.16 (0.08)d 0.09 (0.07) 0.94 (0.06)b –

The “high” datasete: Four components 0.521 13
ki;1 (unitless)f 1 (�) 1.47 3.79 0.05
OCi;% w w�1 f 2.22 0.00 1.30 70.5

a p<0.10.
b p < 0.000.
c
“low”: TOC<1% w w�1.

d p < 0.05.
e
“high”: TOC>1% w w�1.

f It is not possible to provide standard errors for determinable parameters since the matrix is ill-conditioned.

Fig. 2. (a) TOC contents of soils approximated by using Eq. (11) (TOCfit) are
plotted against experimental values (TOCexp). (b) Differences between TOCfit

and TOCexp are plotted against TOCexp. The dotted line represents zero differ-
ences between TOCfit and TOCexp.
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Using three or four components in the four-componentmodel (Eq. (11))
had no significant effect also on the values of model parameters (Table 2).
Component 3 might be of particular interest as its computed OC content is
determined as a finite non-zero value, thus making it a major component
that controls soil TOC content.
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3.3. Separating the soil sample set in the subsets with different levels of
TOC contents

In light of the different behavior of the model at different soil TOC
ranges (Fig. 2b), the whole dataset was divided into two subsets: one
containing samples with TOC<1%, ww�1 (termed “low”; 142 IR spectra)
and one containing samples with TOC>1% w w�1 (termed “high”; 71 IR
spectra). This 1% w w�1 threshold was selected because at this TOC
content, the difference between the fitted and experimental TOC contents
approaches zero (Fig. 2b). Both subsets were fitted, maintaining the same
number (four) of the MRC-ALS components as proposed in the exami-
nation of the whole dataset.

The fitted model to the “low” subset explained 99.7% of the variance
and had Lof of 5.87%, and a standard deviation of residuals of 0.039. The
“high” subset optimization resulted in 99.8% of the variance explained,
Lof of 4.97%, and the standard deviation of residuals of 0.029. Fig. 3a
presents the four components from the decomposition of the whole
dataset, and the “low” and “high” datasets. It is seen in Fig. 3a that the
spectra of components 1–3 obtained in the whole dataset and the “low”

subset essentially coincide, except for some small differences in the
spectra of the third component at wavenumbers above 3000 cm�1. This
coincidence is supported by a direct examination of determination co-
efficients calculated for correlations betweenmean-centered absorbances
of the spectra under comparison (Varmuza et al., 2003), shown in
Table 3. For the first three components, the r2 values describing corre-
lations between spectra obtained from the whole dataset and its “low”

part are � 0.99. Even for the fourth component, the correlation is high,
with r2 ¼ 0.914. However, when examining the spectra of the four
identified components in the “high” subset, they show clear differences
from the spectra associated with the whole dataset. These differences are
reflected in r2 values lower than 0.9 (Table 3). This suggests that the
mid-IR spectra of the components extracted from the whole dataset were
characteristic foremost for the “low” dataset which could be due to the
imbalance in the number of samples in the "low" and "high" datasets (142
and 71, respectively).

3.4. Modeling the TOC contents of sample subsets

We applied Eq. (11) to model the TOC content of soil samples
belonging to the two subsets, “low” and “high”, based on the concen-
tration scores of the four components determined separately for each of



Fig. 3. (a) Mid-IR spectra of the four MCR-identified soil components in the whole dataset and its two subsets, including the samples with TOC content below 1% (w
w�1; “low”) and above (“high”). (b) Mid-IR spectra of the four MCR-identified soil components in the “low” subset and in its two randomly obtained halves. Spectra are
normalized to unit absorbance at its maximal value.

Table 3
Correlations between the component's spectra identified in different datasets.

Datasets of spectra decomposed into components' contributions, under comparison Component (as depicted in Figs. 1 and 3) r2

Whole dataset vs “low” dataset 1 0.995
2 0.999
3 0.990
4 0.914

Whole dataset vs “high” dataset 1 0.863
2 0.813
3 0.759
4 0.864

The “low” dataset vs its 1st half 1 0.995
2 0.999
3 0.999
4 0.707

The “low” dataset vs its 2nd half 1 0.992
2 0.954
3 0.992
4 0.909

The “low” dataset: 1st half vs 2nd half 1 0.999
2 0.948
3 0.997
4 0.621
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them. The results of this modeling, including the values of adjustable
parameters, standard errors, RMSD, and explained variance are provided
in Table 2. Fig. 4 shows the fitted TOC values plotted against the
experimental ones, for each of two soil sample subsets. The separation of
8

the whole sample set led to an essential improvement in modeling soil
TOC<1% (w w�1), with an explained variance of 62% and RMSD of
0.175% w w�1 (Table 2) which is comparable with commonly explained
variance when modeling TOC using PLS regressions (e.g., 52–96%;



Fig. 4. TOC contents of soils approximated using Eq. (11) (TOCfit) are plotted
against experimental values (TOCexp): (a) the soil subset with TOC<1% w w�1

(“low”); (b) the soil subset with TOC>1% w w�1 (“high”). The straight lines
represent the linear regressions.
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Nduwamungu et al., 2009; Baldock et al., 2013; Soriano-Disla et al.,
2014; Matamala et al., 2019; Gomez et al., 2020). However, note that
interpretations of PLS regressions are not obvious (Pirouz, 2010; Fritz-
sche et al., 2019; Xia, 2020; Lado et al., 2023). In contrast, the
MCR-ALS-based descriptors are associated with interpretable sets of
IR-active chemical bonds and functional groups, where changes in the
concentration scores of MCR-ALS components reflect changes in sample
chemical composition.

Two MCR-ALS components, the first and the third, are characterized
by the largest OCi values and contribute distinctly to the soil TOC in the
samples belonging to the “low” dataset modeled with four components
(Table 2). Once again, as in the whole dataset, component 4 did not
contribute to TOC. Interestingly, the computed OC content associated
with the third component (0.90 � 0.08% w w�1) is essentially three
times larger than that found for the first component (0.31 � 0.16% w
w�1). This is in agreement with an earlier conclusion that components 1
and 3 are different organo-mineral complexes whereas component 3
seems to possibly be enriched by SOM (section 3.1). Further proof of the
robustness of the IR spectra decomposition usingMCR-ALS emerged from
a split-half analysis which involved the separation of the “low” subset
into two randomly selected halves. Each half was once again decomposed
into components using MCR-ALS, with the variance explained being 99.6
and 99.7%, Lof being 6.12 and 5.18%, and the standard deviation of
residuals being 0.040 and 0.034, for the first and second half, respec-
tively. Fig. 3b compares the spectral loadings of the components obtained
during the decomposition of mid-IR spectra of the “low” subset and its
two random halves. The spectral loadings of the first three components
are very close in these three datasets. This similarity is evidenced also by
strong correlations between spectra in paired comparisons (high r2,
Table 3). Thus, the identification of these components did not depend
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substantially on the specific dataset as they have been found in all four
datasets: the whole one, a “low” subset, and the two halves of the “low”

subset (Fig. 3a and b).
In the above comparison (Fig. 3b), the fourth component behaved

differently; its spectral loading depended on the specific dataset, and the
correlations of its spectral loading between different datasets were much
weaker (Table 3). As mentioned earlier regarding the analysis of the
whole dataset, the role of this fourth component in modeling the TOC
content seems negligible. Indeed, when omitting the fourth component
from the fitting of Eq. (11) for the “low” dataset, TOC modeling yielded
practically the same RMSD as with the four components, a very similar
percentage of explained variance, and well-comparable values of the
adjusted model parameters, including detectable non-zeroOC contents of
components 1 and 3 (Table 2).

In contrast to the modeling of the “low” subset, the dataset with TOC
exceeding 1%ww�1 threshold, was poorly modeled, with RMSD 0.521%
w w�1 (Table 2) showing that the model (Eq. (11)) cannot accurately
represent elevated contents of TOC. In this poorly modeled case, Statis-
tica 7.0 Statsoft did not allow to obtain the standard errors of parameters,
reporting the ill-conditioned data matrix.

3.5. Feasibility of the model, its assumptions and perspectives – discussion

Recalling our third objective, which was to test whether the MCR-
ALS-derived soil components allow modeling soil TOC content, we
noted that the modeling success depended on a specific range of TOC
content. As explained in section 2.1, there are two central assumptions in
the approach we used. One is that it is possible to identify chemically
meaningful components explaining soil mid-IR spectra using nonnega-
tive MCR-ALS decomposition. This assumption seems to be valid
considering the high extent of the IR absorbance variance explained by
the nonnegative MCR-ALS components in the whole dataset (99.7%), its
subsets (99.7% and 99.8%, for the “low” and “high” subsets, respec-
tively), and the robustness of decomposition (as discussed above, section
3.4). It is worth keeping in mind that the MCR-ALS–derived components
are not individual substances but each one may include different organic
molecules and inorganic constituents, such as clay minerals, carbonates,
metal oxides, oxyhydroxides and others. In an MCR-ALS component, the
individual chemical materials maintain constant proportions in the
samples studied. A high degree of the absorbance variance explained
indicates that if above-mentioned chemical materials contribute mean-
ingfully to the measured IR spectra, they are also represented by MCR-
ALS components.

The second assumption was that it is possible to identify all TOC-
controlling components using the MCR-ALS-based decomposition of IR
spectra. The results of the work showed that this assumption was violated
when soil TOC content exceeded 1% w w�1. The existence of the TOC
threshold resulted in a sharp loss of capability of the MCR-ALS compo-
nents to model soil TOC at >1% w w�1. At elevated TOC contents the
MCR-ALS-based decomposition of soil mid-IR spectra, although
explaining more than 99.7% of the spectral variance, did not succeed in
quantifying all TOC content-controlling components. The threshold
determined for the current particular dataset is not necessarily applicable
to other soil samples.

It is hardly plausible that there are SOM pools that are not active in
mid-IR spectra. Hence, the failure of TOC modeling at elevated TOC
contents suggests that some important soil constituents controlling TOC
content are masked in soil mid-IR spectra by others. A natural explana-
tion is that inorganic constituents (e.g., clay minerals) dominate in the
MCR-ALS decomposition of soil mid-IR spectra. Hence, modeling of the
soil TOC content by MCR-ALS components below 1% w w�1 was prob-
ably indirect, at least, in part. It can be strongly linked to minerals present
that variously bind SOM and form organo-mineral complexes. A loosely
mineral-bound SOM is probably less mirrored by mineral IR spectral
fingerprints and, therefore, its contribution to TOC is only poorly
accounted for. Thus, the 1% w w�1 threshold suggests that above this
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value, in our studied soils there is a significant part of SOM that is not
linked tightly to soil minerals. Hence, MCR-ALS components identified in
mid-IR spectra and dominated by the minerals could not account (most
probably implicitly) for this SOM fraction.

The above mentioned explanation should yet be considered as a hy-
pothesis. Nevertheless, the existence of a threshold in the TOC modeling
efficacy using MCR-ALS components extracted from soil IR spectra is of
interest. This may provide a way to distinguish soil samples with domi-
nance of different types of SOM, from those ones “tightly” bound to
minerals (and therefore, their contribution to TOC is correlated with
mineral IR spectral fingerprints), to those rather loosely bound to min-
erals or particulate SOM. The SOM fraction “tightly bound to minerals”
might be related to (not necessarily coincide with) the mineral-associated
fraction of SOM determined by common methods (Yu et al., 2022). Thus,
the TOC “threshold”, if identified, can be informative when associations
between minerals and SOM become weaker, or a mineral's capacity to
interact with SOM becomes, to a certain extent, exhausted. This phe-
nomenon is of interest for better understanding the SOM fractions that
control carbon storage and stabilization (K€ogel-Knabner and Rumpel,
2018; Lehmann and Kleber, 2015). Hence, it could be a future task to
apply the nonnegative MCR-ALS decomposition of mid-IR spectra and to
perform TOCmodeling in whole soil samples and their fractions differing
by contributions of mineral-associated SOM, and to examine whether
there are links between the model efficacy to describe TOC content and
the mineral-associated SOM fraction in the whole TOC. This type of work
is currently on its way.

The major current limitation of the proposed approach to model soil
TOC is seen as the lack of applicability to soils widely differing in TOC.
Hence, the further expected (and important) question is whether (and
how) this approach can be successfully extended to diverse soils differing
in TOC content and mineral composition. As follows from the above
discussion, the problem in TOC modeling may result when (i) TOC is
contributed by portions of SOM that are not associated sufficiently
strongly with mineral surfaces, so that it could be accounted for indi-
rectly through mineral contributions to IR spectra, and (ii) the SOM
contribution per se to IR spectra of soils and MCR-ALS components is not
significant. Therefore, in its current form, our approach is expected to be
applicable for SOM-poor soils, yet rich in minerals that provide signifi-
cant interfaces for interacting with SOM, or soils rich by SOM contrib-
uting more distinctly to measured IR spectra. TOC content in soils
“intermediately” enriched by SOM will be less successfully modeled
usingMCR-ALS components derived from IR spectra (it is not possible yet
to provide strict limits for “rich”, “poor” or “intermediate” cases). It is
also expected that in soils rich in SOM, better fingerprinting organic
matter in IR spectra should lead to an improved modeling of the TOC
content, but an identification of a SOM pool stronger interacting with
minerals may become more difficult.

A possible way to improve the efficacy of the described approach
that explores MCR-ALS decomposition of mid-IR spectra and to make
it more universal for modeling TOC contents in soils is to use those
regions in soil mid-IR spectra that are largely contributed by molecular
vibrations of SOM constituents. The latter will make SOM contribu-
tions to MCR-ALS-derived components more influential. However, an
effective solution that can essentially improve the ability of Eq. (11)
(and nonnegative MCR-ALS components derived from soil IR spectra)
to model soil TOC could be based on consideration of a principal
difference between the common use of the PLS regressions and the
approach proposed in this paper. From the beginning, PLS regressions
are forced to fit the goal that is soil TOC content. The MCR-ALS
decomposition is not related per se to the soil TOC modeling which
is performed with Eq. (11). Hence, the additional constraint may be
introduced into the MCR-ALS decomposition of soil mid-IR spectra.
This constraint is the requirement of best fit for soil TOC values
(through Eq. (11)). The soil TOC best-fit constraint is supposed to
make decomposition “supervised” and less flexible, but the obtained
components will be forced to fit TOC values better.
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4. Conclusions

A bilinear nonnegative MCR-ALS decomposition of soil mid-IR
absorbance spectra provides a way to identify meaningful sets of chem-
ical bonds and functional groups maintaining constant proportions
among soil samples. Decomposed spectral components representing
identifiable soil components can be linked to multiple soil properties,
and, foremost to soil TOC contents, thus providing a basis for mechanistic
physicochemical models.

In our particular soil sample set, the performance of the developed
mechanistic model in representing soil TOC values depended on a spe-
cific TOC range and revealed a threshold TOC in model efficacy. The
appearance of this threshold upon the increase in soil TOC content may
indicate the significance of SOM which could be particulate or weakly
associated with minerals. Identifying such a threshold TOC for model
performance could be of great interest considering the commonly
accepted importance of mineral-associated SOM for soil carbon storage
and sequestration.

This work is the first attempt to perform a nonnegative MCR-ALS
decomposition of soil mid-IR spectra, and in particular, to link this
decomposition to soil TOC. Certainly, more work is needed to extend and
verify the applicability of the proposed approach to soils with variable
mineral composition and SOM content and examine the relations be-
tween the model capability to represent soil TOC and the distribution of
SOM between the fractions differing in their association with minerals.
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Câmara, A.B.F., da Silva, W.J.O., Moura, H.O.M.A., Silva, N.K.N., de Lima, K.M.G., de
Carvalho, L.S., 2022. Multivariate strategy for identifying and quantifying jet fuel
contaminants by MCR-ALS/PLS models coupled to combined MIR/NIR spectra. Anal.
Bioanal. Chem. 414 (27), 7897–7909. https://doi.org/10.1007/s00216-022-04324-
9.

Davis, W.M., Erickson, C.L., Johnston, C.T., Delfino, J.J., Porter, J.E., 1999. Quantitative
Fourier transform infrared spectroscopic investigation of humic substance functional
group composition. Chemosphere 38 (12), 2913–2928. https://doi.org/10.1016/
S0045-6535(98)00486-X.

de Juan, A., Tauler, R., 2021. Multivariate Curve Resolution: 50 years addressing the
mixture analysis problem – a review. Anal. Chim. Acta 1145, 59–78. https://doi.org/
10.1016/j.aca.2020.10.051.

Draper, N.R., Smith, H., 1968. Applied Regression Analysis. John Wiley and Sons, Inc.
Ellerbrock, R.H., Gerke, H.H., 2004. Characterizing organic matter of soil aggregate

coatings and biopores by Fourier transform infrared spectroscopy. Eur. J. Soil Sci. 55
(2), 219–228. https://doi.org/10.1046/j.1365-2389.2004.00593.x.

Ellerbrock, R.H., Kaiser, M., 2005. Stability and composition of different soluble soil
organic matter fractions - evidence from δ13C and FTIR signatures. Geoderma 128
(1–2), 28–37. https://doi.org/10.1016/j.geoderma.2004.12.025.

Fern�andez-Carrasco, L., Torrens-Martín, D., Morales, L.M., Martínez-Ramírez, S., 2012.
Infrared spectroscopy in the analysis of building and construction materials. Infrared
Spectroscopy - Materials Science, Engineering and Technology. Intech. https://
doi.org/10.5772/36186.

Fritzsche, A., Ritschel, T., Schneider, L., Totsche, K.U., 2019. Identification and
quantification of single constituents in groundwater with Fourier-transform infrared
spectroscopy and Positive Matrix Factorization. Vib. Spectrosc. 100, 152–158.
https://doi.org/10.1016/j.vibspec.2018.09.008.

Gomez, C., Chevallier, T., Moulin, P., Bouferra, I., Hmaidi, K., Arrouays, D., Jolivet, C.,
Barth�es, B.G., 2020. Prediction of soil organic and inorganic carbon concentrations in
Tunisian samples by mid-infrared reflectance spectroscopy using a French national
library. Geoderma 375, 114469. https://doi.org/10.1016/j.geoderma.2020.114469.

Gossart, P., Semmoud, A., Ruckebusch, C., Huvenne, J.P., 2003. Multivariate curve
resolution applied to Fourier transform infrared spectra of macromolecules: structural
characterisation of the acid form and the salt form of humic acids in interaction with
lead. Anal. Chim. Acta 477 (2), 201–209. https://doi.org/10.1016/S0003-2670(02)
01415-0.

Gunasekaran, S., Anbalagan, G., Pandi, S., 2006. Raman and infrared spectra of
carbonates of calcite structure. J. Raman Spectrosc. 37 (9), 892–899. https://doi.org/
10.1002/jrs.1518.

Hay, M.B., Myneni, S.C.B., 2007. Structural environments of carboxyl groups in natural
organic molecules from terrestrial systems. Part 1: infrared spectroscopy. Geochem.
Cosmochim. Acta 71 (14), 3518–3532. https://doi.org/10.1016/j.gca.2007.03.038.

Huang, C.K., Kerr, P.F., 1960. Infrared study of carbonate minerals. Am. Mineral. 45
(3–4), 311–324.

Ioannidi, E., Aarøe, E., de Juan, A., Risbo, J., van den Berg, F.W.J., 2023. Modeling
changes in chocolate during production and storage by ATR-FT-IR spectroscopy and
MCR-ALS hybrid soft and hard modeling. Chemometr. Intell. Lab. Syst. 233, 104735.
https://doi.org/10.1016/j.chemolab.2022.104735.

Jaumot, J., de Juan, A., Tauler, R., 2015. MCR-ALS GUI 2.0: new features and
applications. Chemometr. Intell. Lab. Syst. 140, 1–12. https://doi.org/10.1016/
j.chemolab.2014.10.003.

Jaumot, J., Gargallo, R., De Juan, A., Tauler, R., 2005. A graphical user-friendly interface
for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemometr.
Intell. Lab. Syst. 76 (1), 101–110. https://doi.org/10.1016/j.chemolab.2004.12.007.

Jaumot, J., Tauler, R., 2010. MCR-BANDS: a user friendly MATLAB program for the
evaluation of rotation ambiguities in Multivariate Curve Resolution. Chemometr.
Intell. Lab. Syst. 103 (2), 96–107. https://doi.org/10.1016/j.chemolab.2010.05.020.

Johnston, C.T., Aochi, Y.O., 1996. Fourier transform infrared and Raman spectroscopy.
Chapter 10. In: Sparks, A.L., et al. (Eds.), Methods of Soil Analysis, Part 3: Chemical
Methods. Soil Science Society of America and American Society of Agronomy,
pp. 269–321. https://doi.org/10.2136/sssabookser5.3.c10.

Just, C., Armbruster, M., Barkusky, D., Baumecker, M., Diepolder, M., D€oring, T.F.,
Heigl, L., Honermeier, B., Jate, M., Merbach, I., Rusch, C., Schubert, D., Schulz, F.,
Schweitzer, K., Seidel, S., Sommer, M., Spiegel, H., Thumm, U., Urbatzka, P., et al.,
2023. Soil organic carbon sequestration in agricultural long-term field experiments as
derived from particulate and mineral-associated organic matter. Geoderma 434,
116472. https://doi.org/10.1016/j.geoderma.2023.116472.

Kaufhold, S., Hein, M., Dohrmann, R., Ufer, K., 2012. Quantification of the mineralogical
composition of clays using FTIR spectroscopy. Vib. Spectrosc. 59, 29–39. https://
doi.org/10.1016/j.vibspec.2011.12.012.
11
K€ogel-Knabner, I., Rumpel, C., 2018. Advances in molecular approaches for
understanding soil organic matter composition, origin, and turnover: a historical
overview. Adv. Agron. 149, 1–48. https://doi.org/10.1016/bs.agron.2018.01.003.

Lado, M., Sayegh, J., Gia Gad~nay, A., Ben-Hur, M., Borisover, M., 2023. Heat-induced
changes in soil water-extractable organic matter characterized using fluorescence and
FTIR spectroscopies coupled with dimensionality reduction methods. Geoderma 430,
116347. https://doi.org/10.1016/j.geoderma.2023.116347.

Lehmann, J., Bossio, D.A., K€ogel-Knabner, I., Rillig, M.C., 2020. The concept and future
prospects of soil health. Nat. Rev. Earth Environ. 1 (10), 544–553. https://doi.org/
10.1038/s43017-020-0080-8.

Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature 528
(7580), 60–68. https://doi.org/10.1038/nature16069.

Li, H., Bolscher, T., Winnick, M., Tfaily, M.M., Cardon, Z.G., Keiluweit, M., 2021. Simple
plant and microbial exudates destabilize mineral-associated organic matter via
multiple pathways. Environ. Sci. Technol. 55 (5), 3389–3398. https://doi.org/
10.1021/acs.est.0c04592.

Li, S., Viscarra Rossel, R.A., Webster, R., 2022. The cost-effectiveness of reflectance
spectroscopy for estimating soil organic carbon. Eur. J. Soil Sci. 73 (1). https://
doi.org/10.1111/ejss.13202.

Li, X., Yang, P., Zhao, W., Guo, F., Jaisi, D.P., Mi, S., Ma, H., Lin, B., Feng, X., Tan, W.,
Wang, X., 2023. Adsorption mechanisms of glyphosate on ferrihydrite: effects of Al
substitution and aggregation state. Environ. Sci. Technol. 57 (38), 14384–14395.
https://doi.org/10.1021/acs.est.3c04727.

Lussier, J.M., Krzic, M., Smukler, S.M., Neufeld, K.R., Chizen, C.J., Bomke, A.A., 2020.
Labile soil carbon fractions as indicators of soil quality improvement under short-
term grassland set-aside. Soil Res. 58 (4), 364–370. https://doi.org/10.1071/
SR19180.

Madhavan, D.B., Baldock, J.A., Read, Z.J., Murphy, S.C., Cunningham, S.C., Perring, M.P.,
Herrmann, T., Lewis, T., Cavagnaro, T.R., England, J.R., Paul, K.I., Weston, C.J.,
Baker, T.G., 2017. Rapid prediction of particulate, humus and resistant fractions of
soil organic carbon in reforested lands using infrared spectroscopy. J. Environ.
Manag. 193, 290–299. https://doi.org/10.1016/j.jenvman.2017.02.013.

Margenot, A.J., Calder�on, F.J., Goyne, K.W., Mukome, F.N.D., Parikh, S.J., 2017. IR
spectroscopy, soil analysis applications. In: Lindon, J.C., Tranter, G.E.,
Koppenaal, D.W. (Eds.), Encyclopedia of Spectroscopy and Spectrometry,
pp. 448–454. https://doi.org/10.1016/B978-0-12-409547-2.12170-5.

Margenot, A.J., Parikh, S.J., Calder�on, F.J., 2023. Fourier-transform infrared spectroscopy
for soil organic matter analysis. Soil Sci. Soc. Am. J. 87 (6), 1503–1528. https://
doi.org/10.1002/saj2.20583.

Matamala, R., Jastrow, J.D., Calder�on, F.J., Liang, C., Fan, Z., Michaelson, G.J., Ping, C.-
L., 2019. Predicting the decomposability of arctic tundra soil organic matter with mid
infrared spectroscopy. Soil Biol. Biochem. 129, 1–12. https://doi.org/10.1016/
j.soilbio.2018.10.014.

McKissock, I., Gilkes, R.J., Van Bronswijk, W., 2003. The relationship of soil water
repellency to aliphatic C and kaolin measured using DRIFT. Aust. J. Soil Res. 41 (2),
251–265. https://doi.org/10.1071/SR01091.

Metzger, K., Zhang, C., Daly, K., 2021. From benchtop to handheld MIR for soil analysis:
predicting lime requirement and organic matter in agricultural soils. Biosyst. Eng.
204, 257–269. https://doi.org/10.1016/j.biosystemseng.2021.01.025.

Nasonova, A., Levy, G.J., Rinot, O., Eshel, G., Borisover, M., 2022. Organic matter in
aqueous soil extracts: prediction of compositional attributes from bulk soil mid-IR
spectra using partial least square regressions. Geoderma 411, 115678. https://
doi.org/10.1016/j.geoderma.2021.115678.

Nduwamungu, C., Ziadi, N., Tremblay, G.F., Parent, L.-�E., 2009. Near-infrared reflectance
spectroscopy prediction of soil properties: effects of sample cups and preparation. Soil
Sci. Soc. Am. J. 73 (6), 1896–1903. https://doi.org/10.2136/sssaj2008.0213.

Ng, W., Minasny, B., Jeon, S.H., McBratney, A., 2022. Mid-infrared spectroscopy for
accurate measurement of an extensive set of soil properties for assessing soil
functions. Soil Security 6, 100043. https://doi.org/10.1016/j.soisec.2022.100043.

Nguyen, T.T., Janik, L.J., Raupach, M., 1991. Diffuse reflectance infrared fourier
transform (DRIFT) spectroscopy in soil studies. Aust. J. Soil Res. 29 (1), 49–67.
https://doi.org/10.1071/SR9910049.

Nocita, M., Stevens, A., Toth, G., Panagos, P., van Wesemael, B., Montanarella, L., 2014.
Prediction of soil organic carbon content by diffuse reflectance spectroscopy using a
local partial least square regression approach. Soil Biol. Biochem. 68, 337–347.
https://doi.org/10.1016/j.soilbio.2013.10.022.

Ouatmane, A., Provenzano, M.R., Hafidi, M., Senesi, N., 2000. Compost maturity
assessment using calorimetry, spectroscopy and chemical analysis. Compost Sci. Util.
8 (2), 124–134. https://doi.org/10.1080/1065657X.2000.10701758.

Paatero, P., Tapper, U., 1994. Positive matrix factorization: a non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics 5 (2),
111–126. https://doi.org/10.1002/env.3170050203.

Pirouz, D.M., 2010. An overview of partial least squares. SSRN Electron. J. https://
doi.org/10.2139/ssrn.1631359.

Ravisankar, R., Chandrasekaran, A., Kalaiarsi, S., Eswaran, P., Rajashekhar, C.,
Vanasundari, K., Athavale, A., 2011. Mineral analysis in beach rocks of Andaman
Island, India by spectroscopic techniques. Arch. Appl. Sci. Res. 3 (3), 77–84. http
://scholarsresearchlibrary.com/aasr-vol3-iss3/AASR-2011-3-3-77-84.pdf.

Rinot, O., Borisover, M., Levy, G.J., Eshel, G., 2021. Fluorescence spectroscopy: a
sensitive tool for identifying land-use and climatic region effects on the
characteristics of water-extractable soil organic matter. Ecol. Indicat. 121, 107103.
https://doi.org/10.1016/j.ecolind.2020.107103.

Rumpel, C., Janik, L.J., Skjemstad, J.O., K€ogel-Knabner, I., 2001. Quantification of
carbon derived from lignite in soils using mid-infrared spectroscopy and partial
least squares. Org. Geochem. 32 (6), 831–839. https://doi.org/10.1016/S0146-
6380(01)00029-8.

https://doi.org/10.2139/ssrn.4491036
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1016/j.trac.2010.01.008
https://doi.org/10.1016/j.trac.2010.01.008
https://doi.org/10.1016/j.soilbio.2018.01.030
https://doi.org/10.2136/sssaj2009.0375
https://doi.org/10.1007/s00216-022-04324-9
https://doi.org/10.1007/s00216-022-04324-9
https://doi.org/10.1016/S0045-6535(98)00486-X
https://doi.org/10.1016/S0045-6535(98)00486-X
https://doi.org/10.1016/j.aca.2020.10.051
https://doi.org/10.1016/j.aca.2020.10.051
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref15
https://doi.org/10.1046/j.1365-2389.2004.00593.x
https://doi.org/10.1016/j.geoderma.2004.12.025
https://doi.org/10.5772/36186
https://doi.org/10.5772/36186
https://doi.org/10.1016/j.vibspec.2018.09.008
https://doi.org/10.1016/j.geoderma.2020.114469
https://doi.org/10.1016/S0003-2670(02)01415-0
https://doi.org/10.1016/S0003-2670(02)01415-0
https://doi.org/10.1002/jrs.1518
https://doi.org/10.1002/jrs.1518
https://doi.org/10.1016/j.gca.2007.03.038
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref24
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref24
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref24
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref24
https://doi.org/10.1016/j.chemolab.2022.104735
https://doi.org/10.1016/j.chemolab.2014.10.003
https://doi.org/10.1016/j.chemolab.2014.10.003
https://doi.org/10.1016/j.chemolab.2004.12.007
https://doi.org/10.1016/j.chemolab.2010.05.020
https://doi.org/10.2136/sssabookser5.3.c10
https://doi.org/10.1016/j.geoderma.2023.116472
https://doi.org/10.1016/j.vibspec.2011.12.012
https://doi.org/10.1016/j.vibspec.2011.12.012
https://doi.org/10.1016/bs.agron.2018.01.003
https://doi.org/10.1016/j.geoderma.2023.116347
https://doi.org/10.1038/s43017-020-0080-8
https://doi.org/10.1038/s43017-020-0080-8
https://doi.org/10.1038/nature16069
https://doi.org/10.1021/acs.est.0c04592
https://doi.org/10.1021/acs.est.0c04592
https://doi.org/10.1111/ejss.13202
https://doi.org/10.1111/ejss.13202
https://doi.org/10.1021/acs.est.3c04727
https://doi.org/10.1071/SR19180
https://doi.org/10.1071/SR19180
https://doi.org/10.1016/j.jenvman.2017.02.013
https://doi.org/10.1016/B978-0-12-409547-2.12170-5
https://doi.org/10.1002/saj2.20583
https://doi.org/10.1002/saj2.20583
https://doi.org/10.1016/j.soilbio.2018.10.014
https://doi.org/10.1016/j.soilbio.2018.10.014
https://doi.org/10.1071/SR01091
https://doi.org/10.1016/j.biosystemseng.2021.01.025
https://doi.org/10.1016/j.geoderma.2021.115678
https://doi.org/10.1016/j.geoderma.2021.115678
https://doi.org/10.2136/sssaj2008.0213
https://doi.org/10.1016/j.soisec.2022.100043
https://doi.org/10.1071/SR9910049
https://doi.org/10.1016/j.soilbio.2013.10.022
https://doi.org/10.1080/1065657X.2000.10701758
https://doi.org/10.1002/env.3170050203
https://doi.org/10.2139/ssrn.1631359
https://doi.org/10.2139/ssrn.1631359
http://scholarsresearchlibrary.com/aasr-vol3-iss3/AASR-2011-3-3-77-84.pdf
http://scholarsresearchlibrary.com/aasr-vol3-iss3/AASR-2011-3-3-77-84.pdf
https://doi.org/10.1016/j.ecolind.2020.107103
https://doi.org/10.1016/S0146-6380(01)00029-8
https://doi.org/10.1016/S0146-6380(01)00029-8


M. Borisover et al. Soil & Environmental Health 3 (2025) 100123
Russell, L.M., Takahama, S., Liu, S., Hawkins, L.N., Covert, D.S., Quinn, P.K., Bates, T.S.,
2009. Oxygenated fraction and mass of organic aerosol from direct emission and
atmospheric processing measured on the R/V Ronald Brown during TEXAQS/
GoMACCS 2006. J. Geophys. Res. Atmos. 114 (D7). https://doi.org/10.1029/
2008JD011275.

Schnitzer, M., 1978. Humic substances: chemistry and reactions. In: Schnitzer, M.,
Khan, S.U. (Eds.), Soil Organic Matter. Elsevier Scientific Publishing Co., New York
l–64.

Silverstein, R.M., Webster, F.X., 1997. Spectrometric Identification of Organic
Compounds, sixth ed. John Wiley & Sons, Inc.

Simkovic, I., Dlapa, P., Doerr, S.H., Mataix-Solera, J., Sasinkova, V., 2008. Thermal
destruction of soil water repellency and associated changes to soil organic matter as
observed by FTIR spectroscopy. Catena 74 (3), 205–211. https://doi.org/10.1016/
j.catena.2008.03.003.

Smidt, E., Schwanninger, M., 2005. Characterization of waste materials using FTIR
spectroscopy: process monitoring and quality assessment. Spectrosc. Lett. 38 (3),
247–270. https://doi.org/10.1081/SL-200042310.

Sokol, N.W., Whalen, E.D., Jilling, A., Kallenbach, C., Pett-Ridge, J., Georgiou, K., 2022.
Global distribution, formation and fate of mineral-associated soil organic matter
under a changing climate: a trait-based perspective. Funct. Ecol. 36 (6), 1411–1429.
https://doi.org/10.1111/1365-2435.14040.

Soriano-Disla, J.M., Janik, L.J., Viscarra Rossel, R.A., MacDonald, L.M., McLaughlin, M.J.,
2014. The performance of visible, near-, and mid-infrared reflectance spectroscopy
for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc.
Rev. 49 (2), 139–186. https://doi.org/10.1080/05704928.2013.811081.

Spaccini, R., Piccolo, A., Haberhauer, G., Stemmer, M., Gerzabek, M.H., 2001.
Decomposition of maize straw in three European soils as revealed by DRIFT spectra of
soil particle fractions. Geoderma 99 (3–4), 245–260. https://doi.org/10.1016/
S0016-7061(00)00073-2.

Takahama, S., Schwartz, R.E., Russell, L.M., MacDonald, A.M., Sharma, S., Leaitch, W.R.,
2011. Organic functional groups in aerosol particles from burning and non-burning
forest emissions at a high-elevation mountain site. Atmos. Chem. Phys. 11 (13),
6367–6386. https://doi.org/10.5194/acp-11-6367-2011.
12
Tarchitzky, J., Lerner, O., Shani, U., Arye, G., Lowengart-Aycicegi, A., Brener, A.,
Chen, Y., 2007. Water distribution pattern in treated wastewater irrigated soils:
hydrophobicity effect. Eur. J. Soil Sci. 58 (3), 573–588. https://doi.org/10.1111/
j.1365-2389.2006.00845.x.

Tauler, R., de Juan, A., Jaumot, J., 2016. Multivariate curve resolution homepage. http
://www.mcrals.info/.

Terhoeven-Urselmans, T., Michel, K., Helfrich, M., Flessa, H., Ludwig, B., 2006. Near-
infrared spectroscopy can predict the composition of organic matter in soil and litter.
J. Plant Nutr. Soil Sci. 169 (2), 168–174. https://doi.org/10.1002/jpln.200521712.

Tesfamichael, T., Hoel, A., Niklasson, G.A., W€ackelgård, E., Gunde, M.K., Orel, Z.C., 2001.
Optical characterization method for black pigments applied to solar-selective
absorbing paints. Appl. Opt. 40 (10), 1672–1681. https://doi.org/10.1364/
ao.40.001672.

Tinti, A., Tugnoli, V., Bonora, S., Francioso, O., 2015. Recent applications of vibrational
mid-infrared (IR) spectroscopy for studying soil components: a review. J. Cent. Eur.
Agric. 16 (1), 1–22. https://doi.org/10.5513/JCEA01/16.1.1535.

Varmuza, K., Karlovits, M., Demuth, W., 2003. Spectral similarity versus structural
similarity: infrared spectroscopy. Anal. Chim. Acta 490 (1–2), 313–324. https://
doi.org/10.1016/S0003-2670(03)00668-8.

Wold, S., Sj€ostr€om, M., Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics.
Chemometr. Intell. Lab. Syst. 58 (2), 109–130. https://doi.org/10.1016/S0169-
7439(01)00155-1.

Xia, Y., 2020. Correlation and association analyses in microbiome study integrating
multiomics in health and disease. Progress in Molecular Biology and Translational
Science 171, 309–491. https://doi.org/10.1016/bs.pmbts.2020.04.003.

Yu, W., Huang, W., Weintraub-Leff, S.R., Hall, S.J., 2022. Where and why do particulate
organic matter (POM) and mineral-associated organic matter (MAOM) differ among
diverse soils? Soil Biol. Biochem. 172, 108756. https://doi.org/10.1016/
j.soilbio.2022.108756.

Zhang, L., Yang, X., Drury, C., Chantigny, M., Gregorich, E., Miller, J., Bittman, S.,
Reynolds,D.,Yang, J., 2018. Infrared spectroscopypredictionoforganic carbonand total
nitrogen in soil and particulate organic matter from diverse Canadian agricultural
regions. Can. J. Soil Sci. 98 (1), 77–90. https://doi.org/10.1139/cjss-2017-0070.

https://doi.org/10.1029/2008JD011275
https://doi.org/10.1029/2008JD011275
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref58
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref58
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref58
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref58
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref59
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref59
http://refhub.elsevier.com/S2949-9194(24)00066-9/sref59
https://doi.org/10.1016/j.catena.2008.03.003
https://doi.org/10.1016/j.catena.2008.03.003
https://doi.org/10.1081/SL-200042310
https://doi.org/10.1111/1365-2435.14040
https://doi.org/10.1080/05704928.2013.811081
https://doi.org/10.1016/S0016-7061(00)00073-2
https://doi.org/10.1016/S0016-7061(00)00073-2
https://doi.org/10.5194/acp-11-6367-2011
https://doi.org/10.1111/j.1365-2389.2006.00845.x
https://doi.org/10.1111/j.1365-2389.2006.00845.x
http://www.mcrals.info/
http://www.mcrals.info/
https://doi.org/10.1002/jpln.200521712
https://doi.org/10.1364/ao.40.001672
https://doi.org/10.1364/ao.40.001672
https://doi.org/10.5513/JCEA01/16.1.1535
https://doi.org/10.1016/S0003-2670(03)00668-8
https://doi.org/10.1016/S0003-2670(03)00668-8
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/bs.pmbts.2020.04.003
https://doi.org/10.1016/j.soilbio.2022.108756
https://doi.org/10.1016/j.soilbio.2022.108756
https://doi.org/10.1139/cjss-2017-0070

	Modeling soil organic carbon content using mid-infrared absorbance spectra and a nonnegative MCR-ALS analysis
	1. Introduction
	2. Methodologies and data sources used in model examination
	2.1. Derivation of the mechanistic model
	2.2. The mid-IR spectra of soil samples
	2.3. Multivariate curve resolution (MCR-ALS) of mid-IR absorbance spectra
	2.4. Fitting of the principal model to soil TOC values

	3. Results and discussion
	3.1. Decomposition of soil mid-IR spectra
	3.2. Modeling the TOC contents of the whole sample set
	3.3. Separating the soil sample set in the subsets with different levels of TOC contents
	3.4. Modeling the TOC contents of sample subsets
	3.5. Feasibility of the model, its assumptions and perspectives – discussion

	4. Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Supplementary data
	References


