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A self-attention–based neural network for three-
dimensional multivariate modeling and its skillful ENSO
predictions
Lu Zhou1 and Rong-Hua Zhang2,3*

Large biases and uncertainties remain in real-time predictions of El Niño–Southern Oscillation (ENSO) using
process-based dynamical models; recent advances in data-driven deep learning algorithms provide a promising
mean to achieve superior skill in the tropical Pacific sea surface temperature (SST)modeling. Here, a specific self-
attention–based neural network model is developed for ENSO predictions based on the much sought-after
Transformer model, named 3D-Geoformer, which is used to predict three-dimensional (3D) upper-ocean tem-
perature anomalies and wind stress anomalies. This purely data-driven and time-space attention-enhanced
model achieves surprisingly high correlation skills for Niño 3.4 SST anomaly predictions made 18 months in
advance and initiated beginning in boreal spring. Further, sensitivity experiments demonstrate that the 3D-
Geoformer model can depict the evolution of upper-ocean temperature and the coupled ocean-atmosphere
dynamics following the Bjerknes feedback mechanism during ENSO cycles. Such successful realizations of
the self-attention–basedmodel in ENSO predictions indicate its great potential for multidimensional spatiotem-
poral modeling in geoscience.
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INTRODUCTION
Skillful predictions for real-time ocean-atmosphere conditions
remain a long-standing challenge in climate research and have lu-
crative scientific and economic benefits. For example, El Niño–Sou-
thern Oscillation (ENSO) is the most dominant ocean-atmosphere
phenomenon in the tropical Pacific that occurs on an interannual
scale, which is manifested by the basin-wide anomalies of sea
surface temperature (SST) and synergetic atmospheric circulation
anomalies in the climate system (1–3). A high number of studies
have demonstrated its profound influence on the climate system
and society through atmospheric and oceanic teleconnections (4,
5). For instance, the occurrence of ENSO induces extreme
weather events around the globe and even affects global crop
yields in the coming year (6, 7). Therefore, tremendous efforts
have been made to understand and predict ENSO over the past
several decades (8–10).

With notable advances in observations and process understand-
ing of ENSO, enormous progress has been made in ENSO simula-
tion and prediction (11–13). In particular, physics-based dynamical
models have been crucial tools for process understanding and phe-
nomenon predictions. However, biases in current models stemming
from inadequate representations of processes hinder realistic simu-
lations of the climate system and long-term ENSO predictions (14,
15). At present, it is still a great challenge to accurately predict ENSO
more than 1 year in advance using traditional physics-based
dynamic models (10, 16–18). Fortunately, recent advances in deep
learning (DL) algorithms and their innovative applications to earth

sciences provide a promising way to improve modeling of natural
weather and climate phenomena (19–21).

Unlike physics-based modeling approaches, data-driven DL
models use neurons to describe intrinsic physical relationships
from input predictors to output predictands automatically regard-
less of explicit physical theories, which greatly improves the accura-
cy of nonlinear system modeling, including ENSO prediction. For
example, the skillful Niño 3.4 SST index [i.e., the area-averaged SST
anomaly in the Niño region (170°W to 120°W, 5°S to 5°N)] predic-
tion at lead times of more than 15 months has been achieved using
DL models, with the spring predictability barrier (SPB) being sub-
stantially alleviated (22–24). In addition, more comprehensive pre-
diction tasks for ENSO-related SST and simultaneous atmospheric
anomaly predictions have also been made using DL models (25–27),
which generate more reasonable and robust results by considering
spatiotemporal dependencies in multiple anomaly fields. Note that
these previous predictions are often made in terms of a simple Niño
index or a single variable (e.g., SST), which apparently cannot satisfy
the need for representing the spatiotemporal evolution of ENSO
and understanding its mechanism.

To date, few studies have been conducted using DL models on
high-dimensional multivariate modeling in geoscience owing to
their limitations in traditional algorithms (28). Conventionally,
for example, convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are generally used as the de facto standard
for spatiotemporal predictions due to their ability to impose spatial
and temporal inductive bias reductions. However, some inherent
properties of CNNs and RNNs hinder their applications in high-di-
mensional multivariate modeling. On one hand, as the resolution
increases for the input fields, CNN models need to be stacked in
many layers to capture the spatial teleconnections, making the
model overly complex, and it consumes a lot of computing resourc-
es. On the other hand, the nonparallelizability nature of RNNs and
the vanishing gradient problem make it a challenge to learn long-
range series dependencies from input data. As DL techniques
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advance, more in-depth innovations for three-dimensional (3D)
multivariate predictions of ENSO are desirable to fully illustrate
the ocean-atmosphere dynamics underpinning ENSO evolution
and enhance model interpretability.

Recently, a self-attention–based architecture named Transform-
er (29) and its variants have become the standard models in natural
language processing (30) and image classification tasks (31) due to
their scalability, efficiency, and powerful migration ability. The
Transformer architecture eliminates convolution and recurrence
operations and replaces them with a self-attention mechanism to
establish multivariable relationships in parallel regardless of their
spatial and temporal distances. Now, this DL technique has not
been widely used in geoscience despite its considerable potential
for high-dimensional climate system modeling (32).

In this study, we present an innovative application of a variant
model based on the Transformer, named 3D-Geoformer, for spatio-
temporal multivariate predictions of ENSO, with the spatiotempo-
ral self-attention mechanism interpreted (see Materials and
Methods). Further prediction examples are made to demonstrate
its superior and robust modeling skills; this technique is particularly
suitable for capturing the nonlocal long-range connections among
atmospheric and oceanic anomalies during ENSO evolution. Spe-
cifically, three essential oceanic and atmospheric variables are se-
lected to train the 3D-Geoformer model, including sea surface
zonal (τx) and meridional (τy) wind stress, and seven-layer ocean
temperature anomalies in the upper 150 m (at 5, 20, 40, 60, 90,
120, and 150 m). These variables consist of physical interactions
that participate in the form of the Bjerknes feedback, providing the-
oretical interpretations for the realization in model predictions.

RESULTS
Our 3D-Geoformer model uses sea surface wind stress (τx and τy)
and upper-ocean temperature anomaly fields from Coupled Model
Intercomparison Project phase 6 (CMIP6) data over the region of
(92°E to 330°E, 20°S to 20°N) for 12 consecutive months as predic-
tors and the same anomaly fields for the following 20 months as
predictands. Then, the multivariate prediction skills of the 3D-Geo-
former model are comprehensively assessed with data from the
Global Ocean Data Assimilation System (GODAS) reanalysis
during 1980–2021 in terms of multiple spatiotemporal evolving
characteristics using multiple error statistical analyses. It is noted
that observed data are not used to fine-tune the 3D-Geoformer
model in this study, because the transfer training technique is diffi-
cult to ensure a consistent and global optimization for such high-
dimensional predictands (see the Supplementary Materials for
more discussions).

Assessments of general prediction skills for the 3D-
Geoformer model
To quantitatively assess the 3D-Geoformer prediction skills, we cal-
culate multivariable correlations for the spatial distribution and
Niño indices, as shown in Figs. 1 and 2. First, the anomaly correla-
tion coefficient (ACC) distributions of τx, τy, SST, and equatorial
temperature anomalies in the zonal-depth sections reveal the
spatial differences in their prediction skills at different lead times.
Overall, the highest ACC skill does not occur in the eastern
Pacific but is located in the central basin, where large predictable
signals exist with much weaker noise (33). As shown, the

predictions of upper-ocean temperature are more skillful and
robust than those of wind stress. For example, the ACC skill of
upper-ocean temperature fields remains larger than 0.5 over most
of the tropical Pacific for 12-month lead time predictions, while
the wind stress anomalies almost lose their predictability at lead
times greater than 9 months.

Notably, there is a low prediction skill region for upper-ocean
temperature anomalies in the equatorial western Pacific (Fig. 1, C,
G, and K), which tends to extend from the sea surface to the subsur-
face in the central Pacific (Fig. 1, D, H, and L). This low skill pattern
is also represented in the CMIP6 simulations, which can be attrib-
uted to the excessive westward extension of the equatorial Pacific
cold tongue in climate models [(33–35); it can be further demon-
strated by comparing the dominant patterns of observed tempera-
ture anomalies (as represented by the leading empirical orthogonal
function modes) with those in CMIP6 simulations as displayed in
figs. S1 and S2]. Hence, when training the 3D-Geoformer model
using the biased CMIP6 data, these systematic biases are also incor-
rectly learned in our data-driven model, causing the predicted tem-
perature anomalies to extend too far west of the dateline compared
to the observations. This prediction bias in the 3D-Geoformer
model can be reduced to some extent by implementing the transfer
learning strategy during the training process (fig. S3).

To further highlight the reliable ENSO prediction skills, we focus
on the performance in terms of Niño index predictions, including
the Niño 3.4, Niño 3, and Niño 4 indices [i.e., area-averaged SST
anomaly in the Niño 3.4 region, Niño 3 region (150°W to 90°W,
5°S to 5°N), and Niño 4 region (160°E to 150°W, 5°S to 5°N), respec-
tively]. These indices are commonly used to define and categorize
ENSO events, such as the different types of ENSO events and their
specific features. Accurate predictions of Niño indices are condu-
cive to increasing our ability to predict the intensities and different
types of ENSO events. Here, we use three measures to evaluate the
Niño index prediction skills relative to observations: Pearson corre-
lation coefficient (PCC), root mean square error (RMSE), and mean
absolute error (MAE), respectively.

The all-season correlation skills of the Niño indices assessed
during 1983–2021 in Figs. 2 (A to C) indicate that the ENSO pre-
diction performances of the 3D-Geoformer model outperforms the
current state-of-the-art climate models (see figs. S4 to S7 for more
comparison analyses). Specifically, it can create a valid Niño 3.4
index prediction for a lead time of up to 18 months (i.e.,
PCC > 0.5); the valid prediction lead time for both the Niño 3
and Niño 4 indices is more than 16 months, while the prediction
errors (as indicated by RMSE and MAE) are acceptable. The corre-
sponding seasonal skill analyses of the Niño index predictions are
further verified (Fig. 2, D to F), indicating the superior prediction
skills in the 3D-Geoformer model. Here, a noteworthy feature is
that the ENSO prediction skill is particularly enhanced to more
than 16 months for predictions made through the boreal springtime
(i.e., PCC > 0.5; figs. S5 and S6), which is the most challenging
season to predict. These quantitative analyses fully demonstrate
the impressive realization using the spatiotemporal self-attention–
based model to make 3D multivariate evolution predictions of
ENSO for long lead time. Moreover, detailed comparisons of pre-
diction skills from this 3D-Geoformer model are made with various
other model and products in figs. S4 to S7, including the CNN
model developed by Ham et al. (22), the Climate Prediction
Center/National Oceanic and Atmospheric Administration
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(NOAA) and International Research Institute for Climate and
Society prediction results (36), and the North American Multi-
Model Ensemble hindcast products (37).

Skillful multivariate predictions: A case analysis for the
2015–2016 El Niño
To elaborate the covarying dynamics more clearly, we select the
2015–2016 El Niño event as an example to demonstrate the superi-
ority of the 3D-Geoformer model in terms of 3D upper-ocean tem-
perature predictions, and more quantitative statistical results are
also presented in this subsection.

The 2015–2016 El Niño is one of the strongest ENSO events ever
recorded, and large uncertainties still exist in predicting its onset
when using traditional dynamical models to start predictions
from spring 2015 as an initial condition (38). It is a suitable
example to evaluate the effectiveness of the 3D-Geoformer model
for predicting this extreme ENSO event. The model can accurately
depict the upper-ocean temperature evolution and its interactions
with SST and wind stress in the tropical Pacific Ocean.

Examples for the predicted Niño 3.4 SST anomalies initiated
from February to June 2015 are shown in Fig. 3A, together with
the corresponding observed anomalies. In general, the temporal
evolution of the predicted Niño 3.4 index closely resembles the ob-
servations, despite aweaker amplitude. For example, the predictions
initiated in February and March generate moderate Niño 3.4 SST
anomalies of approximately 1.5°C in winter; the observed anomalies
reach approximately 3°C. The underestimation prediction bias

during the springtime is due to SPB, which can be substantially
ameliorated in the 3D-Geoformer model, although it cannot be
eliminated completely. In contrast, starting from April, predictions
can accurately capture the strong SST anomalies similar to
observations.

Furthermore, we highlight the 3D upper-ocean temperature
anomaly evolution in association with the surface wind stress that
is captured in the 3D-Geoformer modeling (Fig. 3); as evident,
ENSO prediction skills are enhanced with the multivariate synergic
ocean-atmosphere dynamics represented: The 3D-Geoformer
model can accurately depict the position and amplitude of covary-
ing anomalies for more than 12 months in advance and distinguish
among different types of central Pacific and eastern Pacific El Niño
at lead times of more than 6 months (figs. S8 and S9).

These effective and accurate predictions using the 3D-Geoform-
er model can be partly attributed to adequate representations of the
ocean-atmosphere system in a coupled manner, which is in accor-
dance with the Bjerknes feedback mechanism. During El Niño, for
example, large warm SST anomalies in the eastern equatorial Pacific
and covarying positive temperature anomalies in the subsurface are
accompanied by westerly wind anomalies over the central equatorial
Pacific around the date line (fig. S10). As shown in Fig. 3 (B to M),
for a 1-year multivariate prediction initiated in April 2015, the 3D
temperature evolution and its relationship with wind stress are
clearly demonstrated. For instance, warm ocean temperature condi-
tion is observed to be sustained in the central Pacific from 2014 on,
which provides a preconditioning as a starting point for the 2015 El

Fig. 1. Distributions of ACCs calculated between analyzed and predicted fields during 1983–2021. (A to L) The results assessed at 6-, 9-, and 12-month lead times
(the first, second, and third columns) are displayed: τx, τy, and SST in the horizontal sections (the first three rows) and upper-ocean temperature anomalies in the zonal-
depth sections on the equator (the last row), respectively. The shading indicates the region where ACCs are below 95% confidence level based on Student’s t test.
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Niño event to occur, allowing for early warming up and continual
strengthening; the event reaches the mature stage in December 2015
(fig. S10). Correspondingly, the 3D-Geoformer predictions reliably
reproduce the observed evolution of 3D temperature anomalies and
the corresponding surface wind variability: Pronounced subsurface
warm temperature anomalies in thewestern equatorial Pacific prop-
agate eastward along the equator from the spring of 2015, which is
accompanied by persistent westerly wind anomalies over the
western-central Pacific; when these subsurface anomalies arrive in
the eastern basin, large positive SST anomalies are occurring in the
eastern Pacific. These 3D multivariate synergies reflect the Bjerknes
positive feedback mechanism well and are entirely comparable with
those made by the state-of-the-art dynamic models (39).

Sensitivity experiments performed for interpretability
As noted above, the skillful realization of 3D-Geoformer modeling
emphasizes the critical role of multivariate coupling dynamics as
represented in the model configuration, including the synergies
among wind stress, SST, and upper-ocean temperature in the trop-
ical Pacific, as well as the effects of off-equatorial processes (1, 40,
41). In particular, the interactions among upper-ocean temperature,
SST, and wind stress are implicitly characterized in our model in a
monthly roll-coupled manner, enabling superior representations of
their coupling. In addition, the equatorward intrusions of temper-
ature anomalies along the Pacific North Equatorial Countercurrent
pathway are also depicted in our model (fig. S11).

In this subsection, we perform sensitivity experiments to reveal
the fundamental processes represented in the 3D-Geoformer. In the
control experiment presented above, wind stress and upper-ocean
temperature anomaly fields are all used as predictors. Then,

several sensitivity experiments are performed using testing sets to
investigate how the model skill is related to different anomaly
fields as predictors and their effects, which is meant to represent
an attempt to improve the physical interpretability for our model.
Here, four test experiments are considered for wind stress removal
and one experiment for off-equatorial temperature removal; wind
stress sensitivity experiments are designed to explore its effects in
coupled modeling, and temperature sensitivity experiments are
used to examine the contributions of off-equatorial processes to
ENSO prediction. All sensitivity analyses for the prediction exper-
iments are ensemble-averaged results from seven calculations, with
only the initialization parameters used in training process being
different.
Wind stress effects on ENSO predictions
Wind stress is an important component in the Bjerknes feedback for
ENSO evolution. For example, it is widely accepted that westerly
wind anomalies over the central-western equatorial Pacific have a
substantial contribution to the development of El Niño events (8,
42, 43), which can provide key information for short-term ENSO
predictions. By contrast, the wind anomalies over the eastern
Pacific contribute relatively less in ENSO evolution. To understand
the specific effect of wind stress on 3D-Geoformer ENSO predic-
tions, four experiments are performed in which the effects of
wind stress anomalies over the entire tropical Pacific (120°E to
80°W, 20°S to 20°N), western Pacific (120°E to 150°E, 20°S to
20°N; τWP), central Pacific (150°E to 150°W, 20°S to 20°N; τCP),
and eastern Pacific (150°W to 80°W, 20°S to 20°N; τEP) are purpose-
ly removed from the input predictors, which are denoted as the
τP_rem, τWP_rem, τCP_rem, and τEP_rem experiments, respectively.

Fig. 2. The prediction skill of 3-month–averaged Niño indices assessed during 1983–2021 for the 3D-Geoformermodel. (A to C) All-season PCC (red), RMSE (blue),
and MAE (pink) as a function of prediction lead months for the Niño 3.4 index, Niño 3 index, and Niño 4 index, respectively. (D to F) The seasonality of correlation skills is
further assessed as a function of lead time and calendar month for the Niño 3.4 index, Niño 3 index, and Niño 4 index, with contours of correlation skills exceeding the
highlighted 0.5 value. The shading around the lines in (A) to (C) indicates the 95% confidence interval obtained by the bootstrap method; the correlation skill is shown in
(D) to (F) only for that over the 95% confidence level based on Student’s t test.
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Fig. 3. Prediction examples made for the 2015–2016 super El Niño event. (A) Analyzed (black line) and 3D-Geoformer model predicted (colored lines) Niño 3.4 SST
anomalies. Different colored lines indicate the predictions initiated from February to June 2015. Two types of experiments are compared with each other: Solid colored
lines are for the cases in which the testing input predictors include all τx, τy, and upper-ocean temperature anomaly fields; the dotted colored lines are for the other
sensitivity cases in which the testing input predictors include the upper-ocean temperature only with wind stress anomaly effects being removed. (B to M) One-year
prediction example for spatiotemporal evolutions initiated from April 2015: wind stress (vectors) and SST (shading) in the horizontal sections and synergetic upper-ocean
temperature anomalies in the vertical-zonal sections on the equator (shading and contours), respectively.
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Here, the 2015–2016 El Niño prediction examples are made in
the τP_rem experiments to demonstrate the essential role played by
wind stress in the extreme event prediction (the colored dotted lines
in Fig. 3A show the experimental results). Obviously, the Niño 3.4
SST prediction skill in τP_rem drops significantly compared to the
control experiment, in which all wind stress and upper-ocean tem-
perature anomalies are kept in predictors. The disparity between the
two experiments is clearly magnified in the springtime-initiated
predictions. For example, the τP_rem prediction made when initiated
in February 2015 completely fails to predict the warming trend in
the autumn and winter of 2015. Similarly, the predicted intensities
of the Niño 3.4 SST anomalies initiated in March and April are also
greatly underestimated compared to the observed values. These
results indicate that persistent westerly wind anomalies over the
western Pacific during 2014–2015 are critically important to the de-
velopment of the 2015–2016 El Niño event. Thus, it is necessary to
fully consider the effects of surface wind forcing to accurately
predict extreme El Niño events (44, 45).

More detailed consequences of the wind stress anomaly effects
over the western, central, and eastern tropical Pacific on ENSO pre-
dictions are separately examined in the τWP_rem, τCP_rem, and
τEP_rem experiments. As shown in Fig. 4A, we measure the

difference ratio of the Niño 3.4 prediction skill (as indicated by
PCC) in the sensitivity experiments compared with the control
run, i.e., Ratio = (PCCsen − PCCcontrol)/PCCcontrol; here, PCCsen
and PCCcontrol represent PCC skills of Niño 3.4 predictions in the
sensitivity and control experiments, respectively.

Obviously, the τCP effect makes a more important contribution
to the ENSO prediction skill than τWP and τEP do at lead times less
than 1 year. Notably, the τEP effect tends to worsen predictions
slightly at lead times more than 6 months in the all-seasonal assess-
ment, suggesting that the τEP effect acts as a noisy predictor compo-
nent and provides little predictable information for long-term
ENSO predictions in our model. These characteristics are also re-
flected in the seasonal variation of the PCC difference between
the sensitivity and control experiments (Fig. 4, C to E), in which
τWP has limited effects on ENSO predictions while the τCP effect
has an obvious seasonal dependence. For example, the τCP effect
greatly enhances the ENSO predictions for the boreal summer
and autumn seasons (Fig. 4D), which are the target seasons with
low prediction skills in the 3D-Geoformer model (Fig. 2D). In
some sense, the significant alleviation of the SPB problem in the
3D-Geoformer model can be partly attributed to the effect of
wind stress (especially τCP) in the modeling.

Fig. 4. Comparisons of ENSO prediction skills between the control and sensitivity experiments during 1983–2021. The effects of anomaly fields in the input
predictors for the sensitivity experiments are purposely removed in some specific regions when testing the 3D-Geoformer model: the τWP_rem, τCP_rem, and τEP_rem ex-
periments indicate that the effects of wind stress anomalies are removed from the testing predictor variables over the western (120°E to 150°E, 20°S to 20°N), central
(150°E to 150°W, 20°S to 20°N), and eastern (150°W to 80°W, 20°S to 20°N) Pacific, respectively; the Toff_eq_rem experiment indicates that the effects of upper-ocean
temperature anomalies are removed off the equator (120°E to 80°W, 5°S to 20°S, and 5°N to 20°N). (A) Quantitative analyses (defined as ∆PCC/PCC) of subregional
anomaly effects in the τWP_rem (green), τCP_rem (blue), τEP_rem (orange), and Toff_eq_rem (red) experiments as a function of different lead times. Here, PCC is the prediction
skill in the control run and ∆PCC is the prediction skill difference between the sensitivity and control experiments. The error bar on the histogram denotes the 95%
confidence interval calculated using the bootstrapmethod. In addition, the differences in terms of Niño 3.4 prediction PCC skills are further assessed for (B) Toff_eq_rem, (C)
τWP_rem, (D) τCP_rem, and (E) τEP_rem experiments relative to the control experiment; as shown, the gray shadings indicateworse prediction skills compared with the control
experiment, and the red shadings indicate better skills.
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In addition to emphasizing the roles of the wind stress anomalies
over the central-western Pacific in ENSO predictions, the seasonal-
ity of τEP effects merits additional investigation. Be aware that the
effect of τEP on ENSO predictions (Fig. 4E) is seasonally dependent
and is positive when they are initiated from springtime, especially at
6-month leads. This results are consistent with recent studies about
the τEP effects on ENSO evolution (46, 47), which highlight the im-
portance of τEP in the ENSO intensity and the temporal evolution of
SST anomalies in the tropical Pacific during the decay phase of
ENSO (typically occurs in boreal spring and summer). Otherwise,
our sensitivity studies also demonstrate the nonnegligible role of τEP
in ameliorating the SPB problem, whereas the role of τEP in ENSO
predictions is currently receiving less attention. These experiments
conducted on the 3D-Geoformer model reveal the potential appli-
cation of data-driven DL models in process understanding.

In general, these experimental results are consistent with the
physical understanding: Wind stress is an indispensable component
of the ocean-atmosphere coupled system, which assures the physical
representations of the dynamic principles within our model, pro-
viding short-term (less than 1 year) predictable information for
ENSO predictions.
Contributions of off-equatorial temperature to ENSO
predictions
As understood, long-term ENSO predictions are more dependent
on subsurface temperature anomalies, including their anomaly
propagation along the equatorial thermocline and the effects of
off-equatorial processes. One of the advantages of the 3D-Geoform-
er model is its representation of upper-ocean temperature anoma-
lies with their coherent interactions with SST and wind stress in the
modeling. Here, we further demonstrate the effects of 3D upper-
ocean temperature anomalies on ENSO predictions and validate
the dynamic rationality of the 3D-Geoformer model.

In this section, a sensitivity experiment is performed in which
the effects of off-equatorial temperature anomalies (Toff_eq) are
removed (denoted as Toff_eq_rem) by assigning the temperature
anomalies in the region (120°E to 80°W, 5°S to 20°S, and 5°N to
20°N) to zero when the temperature fields are fed into the model
as predictor; then, the ENSO prediction skills are assessed relative
to the control run. Figure 4 (A and B) indicates that the Toff_eq effect
is critical in long-term ENSO predictions, which evidently improves
the prediction skills when the model is initiated in the summer and
autumn seasons with lead times of more than 10 months. For
example, when comparing the prediction skills between the
Toff_eq_rem and control experiments, a significant difference
emerges, with more than 0.12 for the predictions aimed at the
July to September season.

In addition, it is noted that the Toff_eq_rem predictions, when ini-
tiated from January to June with lead times of less than 6 months,
outperform those in the control experiment (Fig. 4B), implying that
the short-term ENSO predictions using the 3D-Geoformer model
rely more on the τCP and equatorial temperature anomalies than
those on the off-equatorial processes.
Relative effects of wind stress and 3D temperature fields
The intrinsic properties and fundamental coupling in the ocean-at-
mosphere system with differently time scale–dependent effects
provide predictable information for ENSO predictions at different
lead times. The wind stress anomaly information in predictors
would contribute more to the predictions at lead times of less
than 1 year, whereas subsurface temperature and off-equatorial

processes can provide interannual oceanic memory for long-term
ENSO predictions (4). Then, we perform further sensitivity exper-
iments to consistently demonstrate these inferences using the 3D-
Geoformer model. Specifically, it is illustrated that τCP is more crit-
ical than τWP and τEP for predictions targeting summer and autumn
seasons, and also plays a great role in mitigating the SPB problem
due to stronger ocean-atmospheric interactions in the central-
western Pacific. The low-frequency ocean memory contained in
the Toff_eq effects contributes to ENSO predictions longer than 1
year in advance due to the delayed propagation of temperature
anomalies along the shallow off-equatorial pathway.

All these sensitivity experiments confirm the physical rationality
of inherent ocean-atmosphere coupling in the 3D-Geoformer
model, providing more robust dynamic support for model predic-
tion effectiveness. In other words, the excellent ENSO prediction
performance using the 3D-Geoformer model benefits from the
multivariate modeling strategy, which physically guarantees the
dynamic relationships among the upper-ocean temperature, SST,
and wind stress to be represented in a coupled way and thus im-
proves the physical interpretability of the modeling success.

DISCUSSION
At present, real-time ENSO predictions mainly rely on physical-
based dynamical models, and large biases and uncertainties still
exist, which greatly hinder long-term ENSO predictions. Recent ad-
vances in data-driven DL-based models provide a promising way
for nonlinear system modeling and multiyear ENSO predictions.
However, limited by the model scale and inherent properties of tra-
ditional convolution and recurrence algorithms, accurate predic-
tions of multidimensional ENSO evolution using DL-based
models remain to be improved adequately.

Inspired by recently successful applications of the sought-after
Transformer model in computer vision, we have developed a
purely self-attention–based neural network, known as 3D-Geo-
former, for ENSO multivariate modeling by inserting spatiotempo-
ral attention modules into the encoder-decoder architecture. The
unique properties of the self-attention mechanism in our model re-
inforce the long-range modeling ability to establish multivariate in-
terconnections by performing attention analyses on the temporal
and spatial axes separately. The effectiveness and superiority of
the 3D-Geoformer model are demonstrated for ENSO predictions,
which can depict the interactions between anomalies of 3D upper-
ocean temperature and wind stress during ENSO evolution.

Specifically, the 3D-Geoformer model can predict the upper-
ocean temperature anomalies in the tropical Pacific with a lead
time of longer than 1 year, as represented by the ENSO-designated
Niño 3.4 index prediction up to almost a year and a half. In partic-
ular, the case analysis in 2015–2016 extreme El Niño predictions
fully demonstrates the impressive performance of the 3D-Geoform-
er model in representing the coupled ocean-atmosphere interac-
tions. Furthermore, sensitivity experiments are conducted to
corroborate the physical interpretation of our model and highlight
the effectiveness of the self-attention–based modeling strategy in al-
leviating the SPB problem, including extreme ENSO predictions.

The black-box nature of DL-based models is a major barrier to
their explainability in ENSO-related predictions. Here, we devel-
oped a 3D DL model (i.e., 3D-Geoformer model) that can capture
the 3D state of ENSO, including upper-ocean temperature from the
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surface to 150 m and surface winds. In terms of explainability, al-
though most ENSO process–related results have already been re-
ported in previous papers in a dynamical modeling context, few
analyses to date have been applied to the mechanism understanding
of ENSO predictions within a DL context. Here, we designed and
performed sensitivity tests to nicely show where signals in predic-
tors are important for ENSO prediction. In particular, we show how
this DL method captures the critical precursors to ENSO evolution.
Hence, these sensitivity experiments that are designed and demon-
strated are vital to provide an advanced understanding of ENSO-
related coupled dynamics and validate the dynamic soundness in
a DL model. For example, the τEP experiment is designed to
reveal something innovative in ENSO-related coupled dynamics
of ENSO. As shown using our 3D-Geoformer, the effects of τEP
on ENSO predictions are seasonally dependent and are helpful in
improving spring time prediction, especially at the 6-month lead.
These results are consistent with recent analyses of Peng et al.
(46) and Zhao and Karamperidou (47), who demonstrated the non-
negligible role of EP wind stress in ENSO evolution. Note that the
effects of τEP on ENSO predictions and the underlying dynamics
have been less studied and thus need to be better understood.
Therefore, our DL-based experiments can not only offer a
method for digging up coupled dynamics of ENSO but also
provide an insight into some of fundamental factors affecting
ENSO predictions.

There is a clear need for further improvements in some aspects
of the 3D-Geoformer configuration we present in this study. On one
hand, to improve computational efficiency, attention calculations in
the 3D-Geoformer are performed among the fixed-size cubic
patches rather than individual grid points. Hence, the effective res-
olution of input fields is reduced, and the attention calculations
within cubic patches are lost. This calculation scheme ignores the
local effects associated with vertical interactions inside one cubic
patch and weakens the representation capability for multiscale pro-
cesses. A more physically reasonable solution is to slice each layer of
input fields separately with flexible-size windows [similar to Liu
et al. (48)] and then calculate attention weights among these
2D patches.

On the other hand, the DL-based model performance is critically
dependent on the quality and quantity of training data. The biases
with the simulation data in the training set can greatly influence the
model performance. A typical example from the 3D-Geoformer
predictions of upper-ocean temperature is the low skill region in
the equatorial western Pacific, which can be attributed to the sys-
tematic tropical bias in the CMIP6 simulations; this problem may
be partially alleviated by implementing transfer training based on
observational data. Although it may weaken the prediction abilities
of other variables or regions when adopting our current transfer
scheme (see the Supplementary Materials), we cannot deny the
role of transfer learning approaches in enhancing the prediction
performance of the 3D-Geoformer model. Theoretically, selecting
appropriate transfer learning algorithms for specific application
scenarios is still one of potential methods to improve our model’s
prediction skills. For example, the model-based transfer approach
with shallow layer parameters frozen during the fine-tune process
(49) and combined with an optimized loss function is worthy of
further investigation in our DL-based modeling. At present, devel-
oping effective transfer learning approaches for such a high-

dimensional spatiotemporal prediction task is such challenging
and is one of our further efforts.

In general, the successful realizations and robust performance of
ENSO-related 3D multivariate predictions using the self-attention–
based model indicate its conspicuous potential for high-dimension-
al climate modeling. The related variant networks can be directly
applied to other weather and climate prediction tasks and are prom-
ising for becoming the de facto standard DL model in geoscience.

MATERIALS AND METHODS
Datasets
ENSO occurs due to its ocean-atmosphere feedback processes,
which are primarily characterized by the interactions between sea
surface wind stress, SST, and subsurface thermal anomalies in the
tropical Pacific (1). To realistically represent these physical cou-
plings in our study, relevant variables are adequately selected to es-
tablish the multivariate prediction model, including τx, τy, and
seven-layer upper-ocean temperature anomalies.

All data need to be uniformly preprocessed before being fed into
the model as an input. The detailed processing procedures are out-
lined as follows. First, the monthly anomaly fields are calculated by
removing the long-term trend and seasonally varying climatological
state. Then, the anomalies in the region (92°E to 30°W, 20°S to
20°N) are interpolated to regular grids with a resolution in the
zonal direction of 2° and in the meridional direction of 0.5° (1°)
(out of ) 5°S to 5°N, and all land grids and missing values are as-
signed to a value of zero. Furthermore, the wind stress and temper-
ature anomalies are normalized with space-averaged SD values to
eliminate the influence of magnitude differences during model
training. Last, all normalized fields are connected along the layer
axis to construct datasets with a total of nine layers to feed into
our model.

The performance of DL models is critically dependent on the
quantity and quality of training data. Therefore, observational geo-
science data with real-world physical processes are the optimal se-
lection for model training, but the observational period is generally
too short to meet the needs for adequate sampling. One possible
option to greatly increase the quantity of training data is to use
model simulation data. Thus, we also use simulation data from 23
CMIP6 climate models during 1850–2014 to train our model (table
S1). In addition, the reanalysis datasets from Simple Ocean Data As-
similation (SODA) products during 1871–1979 and Ocean Reanal-
ysis System 5 (ORAS5) products during 1958–1979 are used as
validation sets to evaluate and select the model with minimal pre-
diction biases. Last, the testing set consisting of GODAS reanalysis
data during 1980–2021 is used to assess model performance and
conduct sensitivity experiments.

3D-Geoformer: The multivariate prediction model and its
application to geoscience
Inspired by the spatiotemporal prediction applications using the
variant Transformer models (31, 50–52) and considering the
unique ENSO-related ocean-atmosphere coupling, a computational
efficiency spatiotemporal attention–based neural network model,
known as 3D-Geoformer, has been established for 3D multivariate
predictions. Similar to most competitive transduction models, the
3D-Geoformer model is also established on an encoder-decoder
scheme with associated modules, including two data preprocessing
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modules, encoder and decoder components, and an output
layer (Fig. 5).

The 3D-Geoformer model takes the gridded data of multivariate
anomalies for 12 consecutive months as input predictors (denoted
as Xin

Tin�C�N lat�Nlon
), consisting of τx, τy, and upper-ocean tempera-

ture anomaly fields (so the channel axis is set to C = 9) with a di-
mension of Tin × C ×Nlat ×Nlon = 12 × 9 × 51 × 120, in which Nlat ×
Nlon is the space grid point numbers of the original fields. The fields
for the following 20 months with dimensions of Tout × C × Nlat ×
Nlon = 20 × 9 × 51 × 120 are the targeted predictands (denoted
as Xout

Tout�C�N lat�Nlon
).

As shown in Fig. 5A, before the encoder, the preprocessing
module takes the predictors Xin

Tin�C�N lat�Nlon
as inputs. Then, each

month’s predictors are split into a series of fixed-size nonoverlap-
ping patches of size C × h0 × w0 = 9 × 3 × 4 over the channel dimen-
sion and mapped to a specified dimensional symbolic
representation with spatiotemporal information embedded
(Fig. 5B). The symbolic representation is then fed into the following
encoder, which is stacked by n1 = 4 identical encoding blocks, with
each block consisting of a multiheaded spatiotemporal attention
layer (here, the head numbers are set to 4; Fig. 5C) and a fully con-
nected network. The encoder component compresses the symbolic
representation to a feature map matrix containing multivariate in-
formation for 12 consecutive months. Next, the encoder feature
map is sent to the decoder and analyzed in the following n2 = 4 de-
coding blocks for predictions, in which three sublayers are

contained in each block. Last, all predictions are mapped to the
anomaly fields Xout

Tout�C�N lat�Nlon
with the same spatial resolutions

as predictors in the output layer. More detailed descriptions of
the model configuration can be seen in section S5.

Model training strategy
The self-attention–based 3D-Geoformer model takes batches of
variables (batch size = 8) with a length of 12 consecutive months
as input predictors and the output fields for the following 20
months as targeted predictands to train the model with a rolling
prediction strategy (fig. S12). That is, for each step, 1 month in
the prediction, the model autoregressively generates the next predic-
tion fields by consuming those predictions at the early prediction
stages as the way in which dynamic models are used for prediction.

To quantify the multivariable fields while enhancing ENSO pre-
dictions, we combine the RMSE of multivariate fields and the Niño
3.4 index together as a loss function to measure the deviation
between predictions and the target predictand

Loss ¼
1

Tout

XTout

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nlat � Nlon � C

XNlon

i¼1

XNlat

j¼1

XC

k¼1
ðXout

t:k:j:i-X
tg
t;k;j;iÞ

2

v
u
u
t

2

4

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNi~no34out
t � Ni~no34tgt Þ

2
q �

where Xtg is the target predictand field and Niño 3.4out and Niño

Fig. 5. Architecture of the 3D-Geoformer model for ENSO-related multivariate predictions. (A) The 3D-Geoformer model consists of two preprocessing modules at
the bottoms of encoder and decoder stacks (in parentheses), an encoder-decoder structure (left and right gray boxes) based on a multiheaded spatiotemporal attention
mechanism, and finally one output layer at the end of the decoder. The input predictors include τx and τy wind stress components and seven-layer upper-ocean tem-
perature anomaly fields for 12 consecutive months in the region (92°E to 30°W, 20°S to 20°N); the anomaly fields in the following 20 months are used as the predictands
for supervised training. (B) Detailed structure of the preprocessing module, which contains a field decomposition and a patch embedding process. (C) Detailed structure
of the multihead spatiotemporal attention module. The data used for predictors and predictands are all normalized.
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3.4tg are the output and target Niño 3.4 SST indices, which are cal-
culated from normalized sea temperature anomalies at 5 m depth,
respectively. Then, an Adam optimization algorithm (53) is selected
to optimize the 3D-Geoformer model under constraint by a learn-
ing rate warm-up trick with an initial learning rate of 1.5 × 10−4.

After each training epoch, we evaluate the RMSE skill of the
model predictions based on the validation set and save the model
parameters with the minimum prediction biases. Furthermore, to
reduce the prediction uncertainty in individual calculations, seven
identical models are all trained in the same way but with different
initialization parameters so that an ensemble prediction can be
realized.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S12
Table S1
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