

Simulating Gravitational Redshift Test Using the European Laser Timing (ELT) Experiment on the ACES Mission

Abdelrahim Ruby ^{1, 2}, Wen-Bin Shen ¹, Ahmed Shaker ², Pengfei Zhang ¹, and Shen Ziyu ³

¹ Wuhan University, Wuhan 430079, China.

² Benha University, Cairo 11629, Egypt.

³ Hubei University of Science and Technology, Xianning 437100, China.

Vienna, Austria & Online | 27 April–2 May 2025

O4 Conclusion

03

Gravitational redshift (GRS)

In this study, GRS is relative time shift between two clocks due to the gravitational field of a body as adapted from Will (2014).

If Einstein's is correct, coefficient $\alpha = 1$

Several experiments and observations have been conducted to confirm this effect (Pound & Rebka 1960; Hafele & Keating 1972; Vessot et al. 1980; Delva et al., 2018; Cacciapuoti et al, 2020; Shen et al., 2021; 2023).

GRS Experiments

Knowledge Gap

- Many studies on testing GRS using microwave time and frequency comparisons exist, but there
 is a lack of research in the optical domain.
- First Local Laser GRS Experiment (1975) : Prof. Alley, University of Maryland (UMD), USA
- ✓ UMD Experiment: 5 flights (military aircraft), 3 identical ground and space cesium clocks (stability 2× 10⁻¹⁴ /day). Altitude : 8 km, then 9 km, and 11 km.

European Laser Timing (ELT) aboard ACES

- On April 21, 2025, ESA launched the Atomic Clock Ensemble in Space (ACES).
- The ACES ensemble comprises two ultra-precise atomic clocks:
- a) SHM (Space Hydrogen Maser): Short-term stability.
- b) **PHARAO** (Projet d'Horloge Atomique par Refroidissement d'Atomes en Orbite): Long-term accuracy.
- ACES utilizes two links: the Microwave Link (MWL), and European Laser Timing (ELT) optical link

ELT Space Segment

ACES Time and frequency reference system		Stability
	PHARAO	$1.5 imes 10^{-13}/\sqrt{ au}$
Atomic Clocks	Hydrogen Maser (SHM)	1×10^{-15} (2) 1 day
European Laser Timing (ELT)	Detector	Single, $< 10 \times 10^{-12}$ @ 300 s
	Timer	$< 1 \times 10^{-12}$
	Stability of Laser Time link	1×10^{-12} (<i>i</i>) 1 day

Left: A SpaceX Falcon 9 rocket carrying ACES. Right: ACES Payload attached to Columbus Laboratory. see <u>https://www.adsadvance.co.uk/new-</u> <u>scientific-experiments-and-supplies-delivered-to-iss.html</u> and <u>https://www.esa.int/Science Exploration/Human and Robotic Exploration/</u> ACES Atomic Clock Ensemble in Space

Left: Stability of PHARAO, SHM, and ACES clock signal. Right: Stability of time deviation of MWL and ELT (Cacciapuoti and Salomon, 2011)

2. Methodology

Triple time transfer in the ELT Experiment

- Ground clock (G) generated laser pulses at emission time τ₁ and transmits them toward space clock (S). Clock S then detects laser pulses at reception time τ₂ and instantaneously reflects them back toward clock G, where they are received at the return time τ₃
- Time offset $\Delta \tau(t)$ between clock *S* and *G* :

$$\Delta \tau(t) = \frac{1}{2} (\tau_1 + \tau_3) - \tau_2 + \sum \delta \tau_i(t) \quad (2)$$

• The summation $\sum \delta \tau_i(t)$ represents the time delay corrections, including geometric, Earth rotation, atmospheric, relativistic contributions, systematic bias and offset and calibration of all instrument delays.

Optical triple time transfer link

2. Methodology

Gravitational Redshift Test

According to General Relativity (GR), the proper time τ of a clock is given (Wolf and

Petit, 1995):
$$\frac{d\tau}{dt} = 1 - \frac{U}{c^2} - \frac{v^2}{2c^2} + O(c^{-4})$$
(3)

Integrating with respect to coordinated time can be used to compare clocks G and S in the time domain as (Ruby et al., 2024) :

$$\Delta \tau(t) = \Delta \tau_0 - \int_{t_0}^t \frac{(U_S - U_G)}{c^2} dt - \int_{t_0}^t \frac{(v_S^2 - v_G^2)}{2c^2} dt$$
(4)

ELT Experiment Eq. (2)

In our study,
$$\Delta \tau^m = \Delta \tau_0 + \alpha \, \Delta \tau^{GR} \tag{5}$$

Experimental Setup

- The Wettzell Laser Station is selected as the time and frequency ground station for its precision infrastructure and reliability in timing experiments.
- Simulation data from MJD 60735 to 60741 (March 2025) includes 40 passes

(~7 days), with 6 per day, each lasting ~7 minutes.

Parameters of Simulation and Optical triple time transfer link

Values of Parameter Items Mission Name International Space Station (ZARYA) Altitude $370 \sim 460 \text{ Km}$ Orbit inclination $\sim 51.6^{\circ}$ TLE file from: https://celestrak.org/ Orbit data CSS orbit interval 1.0 s 0.1 m and $1 \times 10^{-5} m/s$ Position/ Velocity accuracy of CSS Observation cutoff elevation angle $5^{\circ} \sim 85^{\circ}$ On-board clock stability $1.5 \times 10^{-13} / \sqrt{\tau}$ $2 \times 10^{-13} / \sqrt{\tau}$ Ground clock stability An ERA5-Based Hourly Global Pressure and Meteorological data Temperature (HGPT) Model Laser wavelength 532 nm Gravity field model EGM2008 for relativistic delay & term $\Delta \tau^{GR}$ Tropospheric model Mendes and Pavlis (2004) Time delay function Blanchet et al. (2000) Tide correction ETERNA

Station at Wettzell ,Germany (Master)

EGU General Assembly 2025

https://ilrs.gsfc.nasa.gov/network/stations/active/WETL_g eneral.html

Lat. (deg)	Lon. (deg)	Elevation (m)
49.1444	12.8780	665

Orbit of ISS/ACES during simulations observations (40 passes)

EGU General Assembly 2025

Experimental Setup

Simulated one-way time delays and clock stabilities

Different time delay simulation in a one-way laser time link.

 Simulation clocks data for PHARAO/ACES and Wettzell ground Hydrogen Maser clock.

EGU General Assembly 2025

• Other factors, such as system delays, geometric corrections, significantly influence the results, they are not considered in this simulation.

Simulated testing of gravitational redshift over one pass

EGU General Assembly 2025

- Simulated, predicted, and measured cumulative time shifts over one pass
- Using single pass, the expected accuracy: $\alpha = 1 (3.9 \pm 0.4) \times 10^{-5}$ (≈ 8 minutes)
- This confirms that the ELT ability to detect redshift predicted by general relativity

Simulated testing of gravitational redshift at the Wettzell Laser Station

After removing outliers, the expected accuracy: $\alpha = 1 - (4 \pm 1) \times 10^{-5} \approx 4$ hours (36 passes)

4. Conclusion

- The ACES experiment employs a state-of-the-art primary frequency standard using laser-cooled cesium atoms with stabilities of $1.5 \times 10^{-13} / \sqrt{\tau}$ and accuracy 1×10^{-16} , along with a novel single-photon detector offering superior timing stability for European Laser Timing (ELT) experiment.
- The ELT experiment achieves an accuracy of ~ 10⁻⁵ for testing gravitational redshift (GRS), as validated by simulated observations.
- Using real ELT data, the expected precision of GRS is 3 to 4 orders of magnitude greater than that of the University of Maryland (UMD), USA, experiment conducted 50 years ago.
- Calibration of both ACES and ground equipment is critical to ensure highprecision GRS measurements and maintain data consistency.

Thanks for your Attention

E-mail : abdelrahim.ruby@feng.bu.edu.eg

Outstanding Student & PhD candidate Presentation contes http://www.bu.edu.eg/staff/abdelrahimruby

Vienna, Austria & Online | 27 April-2 May 2025