
Predicting the SYM‐H Index Using the Ring Current Energy
Balance Mechanism
Lan Ma1 , Yong Ji2, Chao Shen1,3 , Gang Zeng4 , Peng E3 , YanYan Yang5 , Shuo Ti6, and
Nisar Ahmad7

1School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China, 2School of Mathematics and Statistics;
Ningxia Key Laboratory of Interdisciplinary Mechanics and Scientific Computing; Ningxia Basic Science Research Center
of Mathematics, Ningxia University, Yinchuan, China, 3National Key Laboratory of Space Environment and Matter
Behaviors, Harbin Institute of Technology, Harbin, China, 4School of Mathematics and Physics, Jingchu University of
Technology, Jingmen, China, 5National Institute of Natural Hazards, Ministry of Emergency Management of China,
Beijing, China, 6State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences,
Beijing, China, 7Department of Physics, Qilu Institute of Technology, Jinan, P. R. China

Abstract The geomagnetic disturbance index SYM‐H is primarily determined by the total kinetic energy of
ring current particles. Therefore, the energy balance mechanism of the ring current can be used to construct an
SYM‐H evolution equation for prediction purposes. This study extends a modeling concept developed by Ji
et al. (2023), https://doi.org/10.1029/2022ea002560 to establish an algebraic equation for predicting the SYM‐H
index based on equilibrium between energy injection and ring current loss. The loss term in the model is
determined by a fully connected neural network. The fundamental form of the energy injection function is
derived from existing solar wind–magnetosphere energy coupling functions, with its scale factor adjusted as a
free‐fitting parameter to optimize the prediction of observations. After being trained on solar wind and SYM‐H
observations from 20 magnetic storms, the new model predicts the SYM‐H index well 1 hr and 2 hr in advance,
with root mean square errors of 6.7 and 8.9 nT, respectively. These accuracies represent a 7% (1‐hr model) and a
6% (2‐hr model) improvement over the previous model. Furthermore, the scale factors for the solar wind
parameters in the energy coupling function determined by the new model can be explained by the previous
observations in the magnetic tail current sheet, confirming that the ring current energy primarily originates from
the current sheet. The lifetime of the ring current particles, as determined by the neural network, varies with the
SYM‐H index. It is approximately 6 hr for the fast recovery phase and more than 10 hr for the slow recovery
phase, consistent with the dominant ring current particles changing from oxygen ions to protons during intense
storms.

Plain Language Summary The energy and matter carried by the solar wind can enter the Earth's
magnetosphere and induce disturbances of magnetic field near the earth. The SYM‐H index is constructed to
quantify the intensity of these disturbances which is positively correlated with space weather disaster events.
Therefore, predicting the SYM‐H index is of significance for space mission. This study further optimizes the
algorithm for predicting the SYM‐H index based on the total kinetic energy balance mechanism of ring current
and proposes a new model. The new model constructs the energy injection function of the ring current based on
an empirical solar wind‐magnetosphere energy coupling function. Neural networks are used to characterize the
loss process of the ring current, successfully distinguishing the fast and slow recovery phases and identifying
ring current particle lifetimes, which are consistent with observations. The prediction accuracy of SYM‐H is
also comparable to other neural network models, making it applicable for space weather operations and useful
for studying the physical mechanisms of solar wind‐magnetosphere energy transport.

1. Introduction
The magnetosphere is constantly engaged in complex nonlinear interactions with the solar wind (Baker
et al., 2007; Consolini, 2018). Through these interactions, the energy and mass carried by the solar wind can
penetrate Earth's inner magnetosphere, leading to significant electromagnetic disturbances. These disturbances
increase the flux of energetic particles in the radiation belt, induce current flow in power grids, and trigger space
weather events such as satellite surface charging and discharging and power grid failures (Jordanova et al., 2020;
Pirjola et al., 2005; Wing et al., 2022). Therefore, understanding the interaction between the solar wind and the
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magnetosphere is crucial for accurate space weather forecasting. Magnetospheric large‐scale convection driven
by reconnection is a key mechanism for transporting matter and energy from the solar wind into the magneto-
sphere, ultimately resulting in magnetic storms and substorms (Nitta et al., 2021) (Y. Q. Yu et al., 2022). When
reconnection occurs, the southward interplanetary magnetic field (IMF) reconnects with the Earth's northward
magnetic field on the dayside, opening the originally closed magnetopause magnetic field lines. These lines are
then advected to the magnetotail, closed again by the reconnection process there, and subsequently transported by
the moving plasma to the sunward side, completing the entire convection process (Ahmad et al., 2025;
Axford, 1969; Dungey, 1961; Zhang et al., 2015). However, the picture of magnetospheric convection is not
singular. Dai et al. (2024) have shown using numerical simulations and observations that even the dayside
reconnection process alone can stimulate magnetospheric convection. In addition to convective injection, the
solar wind may also penetrate the magnetosphere through the Kelvin–Helmholtz (KH) shear instability or
anomalous diffusion at the magnetopause boundary layer (Graham et al., 2022; Hasegawa et al., 2004; Li
et al., 2023; Treumann et al., 1991). It has also been shown that wave processes can transfer energy from the solar
wind to the ionosphere or inner magnetosphere, where large‐scale kinetic and magnetic energy can be converted
into thermal energy. In conclusion, solar wind–magnetosphere coupling is a multi‐scale and complex process that
is difficult to describe accurately with analytical methods. Therefore, the development of an empirical model
based on observational data and theory is critical for quantifying the overall impact of the solar wind on the
magnetosphere.

Many empirical coupling functions, which are mathematical formulas composed of solar wind parameters such as
the velocity, temperature, and magnetic field, have been introduced to characterize the impact of the solar wind on
Earth (P. D. Perreault, 1974) (Perreault & Akasofu, 1978; Lockwood, 2022). These coupling functions estimate
the energy injection rate from the solar wind into the magnetosphere (Akasofu, 1981; Vasyliunas et al., 1982).
Since the system of partial differential equations describing the interaction between the solar wind and the
magnetosphere is nonlinear and multifield, it is impossible to solve these equations theoretically and identify a
universal coupling function (Finch & Lockwood, 2007; Gonzalez, 1990). However, theoretical considerations can
guide researchers toward approximate formulas for the coupling function. For instance, dimensional analysis
suggests that energy fluxes carried by the upstream solar wind, such as electromagnetic and mechanical energy
flux densities, would be appropriate input functions. This finding leads to a power‐law formula for the coupling
function that depends on solar wind parameters. The power law also reflects the similarity of multi‐scale pro-
cesses in the magnetosphere (Barenblatt, 1996). It is important to note that the coupling function derived from
dimensional analysis includes parameters that are not yet defined. These parameters can be determined by
adjusting them to optimize the correlation between geomagnetic disturbances and coupling functions, either using
observations of geomagnetic disturbance indices and solar wind data or by calculating the energy input rate from
magnetohydrodynamic (MHD) simulation data sets (Bargatze et al., 1985; Borovsky, 2021; Lockwood, 2022).
However, MHD simulations may not capture all the details of interactions between the solar wind and the
magnetosphere, particularly at smaller scales. Therefore, while MHD data sets are a useful reference, direct
observations of the solar wind and geomagnetic indices should also be considered to accurately identify the
coupling function.

A portion of the mass and energy from the solar wind that enters the magnetosphere is transported to the ring
current, a near‐circular flow of charged particles drifting around Earth's dipole field. This ring current primarily
consists of hydrogen, oxygen, and electrons from the solar wind and ionosphere (S. Y. Fu et al., 2001). When the
IMF is oriented southward, it drives strong large‐scale magnetospheric convection, resulting in the injection of
particles and energy from the solar wind and ionosphere into the ring current, thereby intensifying it (Dag-
lis, 2006; Ebihara & Ejiri, 2003; Fok et al., 2001). This intensified ring current causes negative disturbances in the
magnetic field near the Earth's surface, particularly in equatorial regions. The SYM‐H index is used to quantify
these disturbances. It represents the average horizontal magnetic field perturbation observed by geomagnetic
stations distributed across equatorial regions and longitudes. The SYM‐H index has a time resolution of 1 minute,
while the Dst index, which is defined similarly, has a time resolution of 1 hr (Mayaud, 1980; Wanliss &
Showalter, 2006). According to the Dessler–Parker–Sckopke relation, there is a linear relationship between the
intensity of the SYM‐H (or Dst) index and the total energy of the ring current. Additionally, because the ring
current energy is influenced by interactions between the solar wind and the Earth's magnetosphere, SYM‐H can
be used as an indicator for evaluating coupling functions. However, it is important to note that SYM‐H is also
affected by magnetopause currents, magnetotail currents, and ionospheric‐induced currents. Therefore, caution is
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needed when using SYM‐H to evaluate coupling functions. Moreover, SYM‐H reflects the overall state of the
magnetosphere and serves as an input for weather disaster prediction models, such as those forecasting energetic
electron flux within the radiation belt (Forsyth et al., 2020; Ganushkina et al., 2017). Consequently, predicting
SYM‐H indices accurately is of critical importance.

The SYM‐H prediction model originated in the work of Burton et al., who derived the time evolution equation for
the Dst (SYM‐H) index based on the energy balance process of the ring current. In Burton's model, the driving
term for Dst is associated with the solar wind input, while the loss term is associated with charge exchange
(Burton et al., 1975). When the parameters were calibrated using observed solar wind data from Explorer 33 and
35, Burton's model produced reasonable predictions, stimulating further development of energy balance models
(Klimas et al., 1997; McPherron & O’Brien, 2001). These models primarily treat SYM‐H evolution as a dynamic
system, using either probabilistic optimization techniques or incorporating complex factors to improve the
prediction accuracy. Shen et al. (2002) used an auroral electrojet index (AL) as an input parameter to calculate
driving electric fields and predict SYM‐H values. This model also facilitates a quantitative investigation of the
relationship between substorms and magnetic storms. Zhu et al. (2006) applied nonlinear autoregressive moving
average model with exogenous inputs (NARMAX) technology to model nonlinear processes in the magneto-
sphere for Dst predictions and explored the connection between variations in Dst and magnetospheric physical
processes. Zhao et al. (2022) used Burton's model to examine SYM‐H predictions during intense magnetic storms
and found that accuracy decreases with increasing storm intensity. Adjusting for the solar wind dynamic pressure
further improved the performance of the Burton model. The key to SYM‐Hmodels lies in selecting an appropriate
energy injection term, known as the energy coupling function. Burton used the solar wind electric field (Ey) as the
coupling function, and subsequent models have explored various alternative forms. New methods must be
developed to determine optimal energy coupling functions to achieve more accurate predictions.

Artificial intelligence technologies, such as neural networks, have also been employed to identify correlations
between solar wind parameters and SYM‐H for prediction purposes (Camporeale, 2019; Pallocchia et al., 2006).
This approach relies on large data sets of observations. Since the 1990s, stable and continuous solar wind ob-
servations from several spacecraft at the L1 point have validated the use of neural networks for SYM‐H pre-
dictions. Wu and Lundstedt (1997) used recurrent neural networks (RNNs) to study the interaction between the
solar wind and the magnetosphere, determine optimal coupling functions, and propose an RNN model for
practical applications. However, during intense magnetic storms, solar wind plasma data is more likely to be
incomplete than IMF data due to the limitations of observation instruments. As a result, many prediction models
rely primarily on IMF data. Earlier models focused mainly on forecasting the Dst index. Cai et al. (2010) extended
the nonlinear autoregressive exogenous model (NARX) neural network to predict SYM‐H by using historical
SYM‐H sequences as network inputs, which improved prediction accuracy, resulting in a root mean square error
of 14.2 nT for 1‐hr SYM‐H predictions. Recently, advancements in computer hardware and the accumulation of
observational data have led to significant developments in artificial intelligence technologies, resulting in
breakthroughs such as image recognition systems, speech processing algorithms, and interactive language
models. These advancements have revitalized progress in space weather forecasting. Deep learning techniques,
such as convolutional neural networks and long short‐term memory (LSTM) networks, have been successfully
applied to SYM‐H forecasting, yielding high levels of accuracy (Collado‐Villaverde et al., 2021; Siciliano
et al., 2021). Iong et al. (2022) developed a SYM‐H prediction model with 5‐min resolution using gradient
boosting machines. Abduallah et al. (2024) introduced SYM‐Hnet, which combines graph neural networks with a
bidirectional LSTM (BiLSTM) architecture to predict SYM‐H using solar wind plasma parameters and IMF
values as inputs. This novel model not only provides accurate SYM‐H predictions but also incorporates Bayesian
statistics to estimate prediction uncertainties. It currently represents the state of the art, achieving an average error
of approximately 5 nT. As solar wind observation data continues to accumulate, AI‐based models can further
improve in accuracy. However, a persistent challenge remains: while data‐driven models can predict ordinary
magnetic storms accurately, they may become unreliable or deviate significantly during extrememagnetic storms,
potentially leading to misjudgments of space weather events.

In summary, the injection of solar wind energy into the magnetospheric system, particularly the ring current, is a
complex process that can only be accurately described by a semiempirical model. Traditional models provide
clear physics but lack precision, whereas the latest neural network models offer high accuracy but are difficult to
interpret and may not guarantee reliable results under extreme conditions. A more effective approach is to design
a model based on physical laws while leveraging the powerful fitting capabilities of neural networks to manage
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complex parameters. Recently, we proposed a composite model that integrates the strengths of Burton's model
and neural networks to achieve high‐precision SYM‐H predictions and explore related physical laws (Ji
et al., 2023). However, this composite model uses only the solar wind electric field as its coupling function, which
does not fully characterize the energy injection from the solar wind. Therefore, this paper aims to develop an
improved model grounded in physical laws by incorporating alternative energy coupling functions and neural
network technology. Section 2 presents the algorithm architecture for predicting SYM‐H. The accuracy of new
predictions and comparison with previous studies are shown in Section 3. Section 4 presents discussions about the
formula of coupling function determined by new model, loss process of ring current and the sources of errors of
predictions. Finally, conclusions are outlined.

2. Method
The key to the composite model is to consider the relevant physical processes needed to construct a high‐accuracy
SYM‐H prediction model. According to the principle of the Burton et al. model (referred to as the BMR model
here), SYM‐H primarily results from the contributions of the ring current and the magnetopause current. Since the
strength of the magnetopause current is determined by the solar wind dynamic pressure, we define SYM‐H∗ =

SYM‐H− bP(1/2)S to specifically represent the contribution from the ring current, where P(1/2)S denotes the solar
wind dynamic pressure. The magnitude of this contribution is positively correlated with the total energy of the
ring current. The total energy of the ring current is mainly influenced by injection and loss processes. Magne-
tospheric convection electric fields determine the amount of energy injected, while loss processes are governed by
charge exchange, magnetopause drift, atmospheric precipitation, and Coulomb collisions. The BMR model
suggests that convection electric fields are directly related to the solar wind electric field and uses BZVX as an
energy injection function. Additionally, the model treats the charge exchange time as the lifetime of the ring
current particles and includes a derived time evolution equation for the Dst index. Due to limited observational
data, parameters in the BMR model are calibrated in a simplified manner, yet it still provides acceptable pre-
dictions. The composite model optimizes the BMR model in two main ways: first, the coefficients in the model
are no longer treated as simplified constants or linear functions but are instead determined by neural networks;
second, the loss term is separated into charge exchange loss and magnetopause drift loss. This optimization begins
with physical considerations. The interaction between the solar wind and the magnetosphere is nonlinear, and the
magnetosphere is not merely passively driven by the solar wind. Changes in the state of the magnetosphere also
impact the transport of energy and matter from the solar wind. Additionally, charge exchange loss and magne-
topause drift loss are distinct mechanisms with difficult‐to‐distinguish lifetimes. After training with data from 20
magnetic storms over a span of 20 years, the composite model achieves an root mean square errors (RMSE) of
7.2 nT at 1 hr and 9.5 nT at 2 hr for predictions, which is comparable to recent models based solely on neural
networks. Furthermore, the composite model can provide detailed information on the coefficients throughout the
entire magnetic storm, which helps to elucidate the energy processes of the ring current during such events.

SYMH ∗(t) = SYMH(t) − b(t)PS(t)
(1/2)

SYMH ∗(t + Δt) = (SYMH∗(t) −
SYMH∗(t)
2τloss/Δt

− Ein) (1 +
1

2τloss/Δt
)

SYMH(t + Δt) = SYMH ∗(t) + b(t + Δt)PS(t + Δt)(1/2)

(1)

In this study, we will further optimize the composite model to enhance the accuracy of SYM‐H predictions and
explore the specific formula for the coupling function. Equation 1 presents the basic framework of the composite
model for predicting the SYM‐H index, where t represents the current time, Δt represents the prediction time
interval (1 or 2 hr in this study), b is a dimensionless parameter, PS denotes the solar wind dynamic pressure, and
SYM‐H∗ = SYM‐H− bP(1/2)S represents the magnetic field disturbance attributed to the ring current. τloss is the
lifetime of ring current energetic particles due to charge exchange processes (with semi‐implicit discretization
used for the loss term). Ein represents the ring current energy injection during the time interval from t to t + Δt,
which is directly related to the coupling function and results in a decrease in SYM‐H during magnetic storms.
Equation 1 is derived from the energy balance constraint of the ring current, where the temporal variation of
SYM‐H or the total energy of the ring current equals the energy injection minus the losses. The challenge lies in
determining the parameters b, τloss, and Ein. Some empirical models use simple values or linear functions based on
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solar wind parameters and IMF to estimate these parameters, but this approach fails to capture the complex
interactions between the solar wind and the magnetosphere. In this study, we employ neural networks to model
these parameters, aiming to capture the complexity of the ring current evolution process and provide more ac-
curate SYM‐H predictions. Additionally, Equation 1 shows that the correlation between the SYM‐H index and Ein
is at least partially influenced by the loss process. Therefore, evaluating the coupling function solely based on this
correlation cannot accurately assess the quality of different functional forms. The appropriate formula for the
coupling function should be evaluated based on the model itself.

The parameters b and τloss in Equation 1 are determined by the neural network defined in the composite model.
For the energy injection term, Ein = c∫t+Δt

t C f dt, where Cf represents the energy coupling function and c is an
adjustment coefficient. In this study, we construct Ein based on the energy coupling function proposed by Wang
et al., which was derived from their extensive simulation data using a PPMLR‐MHD solar wind‐magnetosphere
coupling numerical model (Wang et al., 2014). Through dimensional analysis, they proposed the following
expression for solar wind–magnetosphere energy injection:

Cf ∼ n0.24V1.47B0.86T [sin2.7 (
θ
2
) + 0.25] (2)

where n is the solar wind particle number density, V denotes the solar wind velocity, BT =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(B2Y + B2Z)
√

, and θ is

the clock angle of the IMF. Based on Equation 2, we propose the following expression for the energy injection
into the ring current:

Ein = cA∫
t+Δt

t
nγ1Vγ2Bγ3T [sin

γ4 (
θ
2
) + β] dt (3)

where the scale parameters γ1∼ 4 and β are no longer predetermined constants but are variable and adjusted based
on the model's performance in predicting SYM‐H. The coefficient c is determined by the neural network because
Cf represents the total energy injected into the magnetosphere, of which the ring current is only a part. Therefore,
the energy that is ultimately injected into the ring current is not fixed and is characterized by c.

The machine learning library PyTorch is used to program the SYM‐H prediction algorithm. As illustrated in
Figure 1, we use fully connected neural networks to determine the parameters b and τloss. Please refer to Ji
et al. (2023) for the specific network settings. The innovation in this study is that we use the solar wind–
magnetosphere coupling function proposed by Wang et al. as a reference to construct the ring current energy
input function. The scale factors γ1∼ 4 and β are set as trainable parameters with gradient information in PyTorch
and embedded in the prediction program, allowing these scale factors to be determined during training with data.
Additionally, the parameter c is obtained through the neural network, with the solar wind electric field and
pressure as inputs.

The data set used in this study includes SYM‐H and solar wind plasma parameters, such as the particle number
density, solar wind velocity, and IMF, all with a time resolution of 1 minute. The data were obtained from the
Space Physics Data Facility (SPDF) at NASA/GSFC. It is important to note that the model requires solar wind
data from observations at the subsolar point of the magnetopause. However, continuous solar wind observations
can only be achieved near the L1 point between the Earth and the Sun by spacecraft. The data from the SPDF were
processed using a time‐shifting algorithm, which estimates solar wind conditions at the subsolar point using
observations at the L1 point. Additionally, during intense magnetic storms, solar wind plasma data are often
missing for certain periods. To address this, linear interpolation is used to fill in the missing data. These storm data
set were carefully selected, and according to our statistics, the proportion of bad data is very low. For the magnetic
field data, the proportion of repaired bad data does not exceed 8%, and for plasma data, the proportion of repaired
data is also less than 18%. Therefore, the impact of bad data repairs on the training of the model is limited. The
training data set (Table 1) spans a complete 12‐year period from 2000 to 2012 and includes 20 storms. The
validation data set contains five storms, and the test data set comprises 13 storms. Each storm has a duration of
approximately 10 days. For consistency with previous studies, the data set selected in this study aligns with those
used in earlier research (Collado‐Villaverde et al., 2021; Ji et al., 2023; Siciliano et al., 2021).
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The SYM‐H prediction algorithm described in the above section is implemented using PyTorch. The training data
set is used to optimize the neural network and the coefficients in the program. RMSE and the coefficient of
determination R2 are employed to evaluate the modle's performance. During training, we define the loss function
as the RMSE between the SYM‐H output (y) and its corresponding observation ( ŷ) .

RMSE(y, ŷ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑
n

j=1
( yj − ŷj)

2
√
√
√

(4)

R2 is a dimensionless metric defined as follows:

R2 (y, ŷ) = 1 −
∑n

j=1( yj − ŷj)
2

∑n
j=1( yj − yj)

2 (5)

The Adam optimizer, a stochastic gradient descent algorithm, is used for continuous and iterative parameter
optimization to minimize the RMSE. Training stops when the RMSE of the validation data set exceeds that of the
training data set, serving as a precaution against overfitting. The learning rate is set to 0.01. Due to the relative
simplicity of the networks in this study, each training session is completed in just a few tens of minutes, which is
advantageous for experimenting with different network designs.

3. Results

Table 2 shows the RMSE and R2 of the 1‐hr model for predicting SYM‐H from magnetic storms in the test data
set. Results from Ji et al. (2023) are also included in Table 2 for comparison purposes. It is evident that for most
magnetic storms with SYM‐H values ranging from − 100 nT to − 300 nT, the composite model achieves an RMSE
of approximately 3–8 nT. However, for two strong magnetic storms with minimum SYM‐H values approaching
− 437 nT and − 394 nT, the predicted RMSEs are much higher, about 11.7 and 11.4 nT, respectively. This
discrepancy arises from a lack of training data for large magnetic storms, leading to insufficient accuracy in the
determined parameters. The average RMSE and R2 values for all tested magnetic storms are 6.7 nT and 0.954,
respectively. Compared to Ji et al. (2023), this model reduces the RMSE by about 0.5 nT and increases R2 by
about 0.003. Notably, for the large magnetic storm 33, there is a significant improvement as its RMSE decreases

Figure 1. The SYM‐H prediction algorithm.
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from 13.9 to 11.4 nT after adopting the new energy coupling function,
resulting in an approximate relative accuracy improvement of around 20%.
The performance of this new model is better than that of previous neural
network models developed by Siciliano and Collado‐Villaverde but falls
slightly short compared to SymHnet developed by Abduallah et al., which
represents the latest advancement in this field. The advantage of this new
model is that it allows for the analysis of the physical processes behind solar
wind–magnetosphere interactions, which is beneficial for further improving
the prediction accuracy of the model. Table 3 presents the RMSE and R2

values obtained for the 2‐hr model using the test data set and also includes the
results from Ji et al. (2023) for comparison. Overall, the prediction accuracy
of the 2‐hr model is slightly lower than that of the 1‐hr model, with an increase
of about 2 nT in the RMSE and a decrease of 0.05 in R2. This is reasonable
because extending the prediction time introduces more random factors
affecting the ring current energy process, which the new model cannot
adequately capture. For storms with SYM‐H values greater than − 300 nT, the
new model predicts SYM‐H with an RMSE of less than 10 nT. However, for
two extremely large storms (29 and 33), the errors are larger, with RMSE
values of 14.7 and 14.8 nT, respectively. The average RMSE and R2 for the
test storms are approximately 8.9 nT and 0.949, respectively. Comparing
these results with those obtained by Ji et al. (2023), our new composite model
demonstrates improved performance, with an RMSE reduction of approxi-
mately 0.6 nT and an R2 improvement of around 0.008. Similarly, the 2‐hr
model predictions outperform those of the neural network model developed
by Siciliano and Collado‐Villaverde, though they fall short compared to the
results from Abduallah et al. To further investigate the performance of the
new model, we analyzed four representative magnetic storms. Figure 2 il-
lustrates the forecast results for magnetic storms 27, 29, 33, and 38. The red
line represents the forecasted SYM‐H index, the black line represents the
observed values, and the blue line shows the difference between the predicted
and observed values. The corresponding minimum SYM‐H index values are
− 320 nT, − 437 nT, − 394 nT, and − 206 nT, respectively. Generally, there is
good agreement between the predictions and observations, particularly during
quiet periods and the latter half of the recovery phase (slow recovery phase),
with deviations of less than 10 nT. However, significant discrepancies occur
during the sudden storm commencement (SSC), main, and early recovery
phases. For storms 27 and 38, the maximum deviations reach about 50 nT,
while for storms 29 and 33, which have larger magnitudes of around − 400 nT,
the maximum deviations are about 100 nT. These large errors occur within
short time intervals and are characterized by pulsating positive or negative
deviations. These errors are primarily caused by rapid variations in the solar
wind impacting the magnetosphere during SSC. It is important to note that the
initial solar wind data is obtained by translating observations from the L1
point to the magnetopause, which introduces potential errors not accounted
for in this model, significantly affecting prediction performance.

Figure 3 shows details of the predicted SYM‐H for typical magnetic storms
using the 2‐hr model. The selected magnetic storms are the same as those in
Figure 2. In the figure, the black line represents the observed SYM‐H, the red
line represents the predictions, and the blue line represents the deviation
between observations and predictions. The 2‐hr model still provides better
forecast results during quiet times, but significant deviations occur during the
SSC andmain phases. These deviations are notably larger than those observed
with the 1‐hr model, suggesting that discrepancies in the 2‐hr model primarily

Table 1
Training Data Sets and Validating Data Sets Used in This Study

No. Start date End date SYM‐Hmin(nT)

Train subset

1 06/08/2000 16/08/2000 − 235

2 15/09/2000 25/09/2000 − 203

3 01/11/2000 15/11/2000 − 176

4 14/03/2001 24/03/2001 − 165

5 06/04/2001 16/04/2001 − 280

6 17/10/2001 22/10/2001 − 219

7 17/05/2002 27/05/2002 − 116

8 15/11/2003 25/11/2003 − 490

9 20/07/2004 30/07/2004 − 208

10 02/01/2005 12/01/2005 − 112

11 13/02/2005 23/02/2005 − 95

12 03/03/2005 13/03/2005 − 66

13 19/08/2005 29/08/2005 − 179

14 01/04/2006 11/04/2006 − 107

15 14/08/2006 24/08/2006 − 95

16 20/09/2006 30/09/2006 − 58

17 07/12/2006 17/12/2006 − 211

18 05/03/2008 15/03/2008 − 100

19 05/10/2008 15/10/2008 − 65

20 01/03/2012 11/03/2012 − 150

Validation subset

21 01/04/2010 15/04/2010 − 90

22 05/11/2010 15/11/2010 − 55

23 18/06/2015 28/06/2015 − 208

24 01/09/2017 11/09/2017 − 146

25 05/05/2019 15/05/2019 − 80

Test subset

26 16/01/2000 26/01/2000 − 101

27 02/04/2000 12/04/2000 − 320

28 19/05/2000 28/05/2000 − 173

29 26/03/2001 04/04/2001 − 437

30 26/05/2003 06/06/2003 − 137

31 08/07/2003 18/07/2003 − 77

32 18/01/2004 27/01/2004 − 137

33 04/11/2004 14/11/2004 − 394

34 10/09/2012 05/10/2012 − 138

35 28/05/2013 04/06/2013 − 137

36 26/06/2013 04/07/2013 − 111

37 11/03/2015 21/03/2015 − 234

38 22/08/2018 03/09/2018 − 206
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arise from the SSC and main phases. Therefore, future models should focus
on a detailed analysis of the SSC and main phases to identify the causes of
these deviations and optimize the model accordingly.

Figures 4a and 4b shows scatter plots of the predicted SYM‐H (vertical axis)
versus the observed SYM‐H (horizontal axis) for (a) the 1‐hr model and (b)
the 2‐hr model. The plots include data from four magnetic storms: 27
(magenta squares), 29 (green diamonds), 33 (black circles), and 38 (blue
triangles), consistent with the data shown in Figures 2 and 3. The red line
represents the line of equality (x= y), which is used to evaluate the prediction
accuracy. The forecast results for the 2‐hr model are more dispersed than
those of the 1‐hr model, indicating that the 2‐hr predictions are of lower
accuracy. For sample points where SYM‐H >0 nT, most fall below the red
line with relatively large dispersion, suggesting poor prediction accuracy
during the SSC of magnetic storms. This indicates that the contribution of
SYM‐H from the magnetopause current, which is influenced by the dynamic
pressure balance, is not quantified well and requires further improvement.

In contrast, for sample points within the − 200 to 0 nT range, the data are
closely clustered around the red line, indicating good agreement between
predictions and observations in this range. However, for sample points below
− 200 nT (mostly corresponding to storms 29 and 33), the distribution starts to
deviate from the red line, suggesting a deterioration in model performance
and decreased prediction accuracy. Comparing our results with those of Ji
et al., who used the interplanetary electric field as an energy injection func-
tion, shows that our approach improves performance by addressing a common
insufficient injection in previous models (Cai et al., 2010; Siciliano
et al., 2021) — the prediction of larger SYM‐H values than those observed
during severe magnetic storms. This indicates that the new energy injection
term using the coupling function expression effectively captures the influence
of solar wind parameters on ring current energy injection.

To evaluate the performance of the new model, the solar wind conditions of
magnetic storm 29, along with the corresponding terms in Equation 1 and the
predicted SYM‐H, are displayed in Figures 5 and 6. Figure 5a shows the
temporal variation of the solar wind dynamic pressure (calculated by
P1/2S = (2μ0PSW)

1/2) throughout the magnetic storm. Here, solar wind dy-
namic pressure is expressed in units of nT for ease of comparison. Figure 5b
provides a detailed depiction of the observed SYM‐H index. The solar wind
dynamic pressure fluctuates significantly during the storm, ranging from 50 to
300 nT, with sudden increases and decreases corresponding to shock wave
structures in the solar wind. Similarly, the SYM‐H index increases and de-
creases in sync with these variations in dynamic pressure, as the magneto-
pause current, determined by the solar wind dynamic pressure, also affects the
observed SYM‐H. Notably, around the fifth day, the dynamic pressure surged
to 300 nT, causing a sudden commencement in SYM‐H; subsequently, the
dynamic pressure stabilized at approximately 200 nT while SYM‐H entered
the main phase and rapidly dropped to − 400 nT. Figure 5c shows the changes
in the parameter b during the magnetic storm, where the red line represents the
1‐hr model result and the blue line represents the 2‐hr model result. Both are
around 0.25, slightly higher than the 0.2 value in the BMR model. The
parameter b is the scaling factor that represents the contribution of the
magnetopause current to the SYM‐H index. During quiet periods, the
magnetopause current is relatively distant from the Earth's surface and re-
mains stable, resulting in a small and nearly constant value of b, with only

Table 2
Root Mean Square Errors and R2 of the 1‐hr Prediction Results Obtained by
the Composite Model on the Test Data Set

Ji et al. (2023) This work

No. RMSE (nT) R2 RMSE (nT) R2

26 4.0 0.969 3.6 0.974

27 8.4 0.967 6.8 0.980

28 6.1 0.964 5.6 0.970

29 12.5 0.972 11.7 0.975

30 8.1 0.867 8.4 0.869

31 6.6 0.933 6.6 0.931

32 7.4 0.920 7.7 0.912

33 13.9 0.971 11.4 0.981

34 3.9 0.939 3.7 0.946

35 5.3 0.953 5.5 0.948

36 4.3 0.971 4.4 0.972

37 8.1 0.965 7.1 0.974

38 5.0 0.972 4.8 0.976

Mean 7.2 0.951 6.7 0.954

Note. The left column takes the interplanetary electric field Ey as the energy
coupling function, and the right column takes the result of Equation 3 as the
energy coupling function.

Table 3
Root Mean Square Errors and R2 of the 2‐hr Prediction Results Obtained by
the Composite Model on the Test Data Set

Ji et al. (2023) This work

No. RMSE (nT) R2 RMSE (nT) R2

26 5.3 0.946 4.9 0.952

27 12.0 0.923 9.8 0.956

28 8.3 0.931 7.4 0.943

29 14.4 0.961 14.7 0.961

30 10.1 0.788 10.4 0.801

31 8.5 0.895 8.2 0.893

32 9.7 0.864 10.6 0.838

33 18.1 0.951 14.8 0.968

34 5.4 0.879 4.8 0.905

35 9.2 0.911 7.3 0.905

36 5.4 0.955 5.7 0.952

37 11.7 0.929 9.3 0.952

38 7.4 0.936 7.1 0.949

Mean 9.5 0.913 8.9 0.921

Note. The left column takes the interplanetary electric field Ey as the energy
coupling function, and the right column takes the result of Equation 3 as the
energy coupling function.
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slight variations occurring during geomagnetic storms. Figure 5d shows the time variation of SYM‐H∗, where
SYM‐H∗ = SYM‐H− bP(1/2)S represents the disturbance with the contribution of the magnetopause current
removed. SYM‐H∗ exhibits a slight decrease compared to SYM‐H while maintaining a similar trend. The
discontinuity at SSC points is less pronounced. However, it is important to note that SYM‐H∗ is not always less

Figure 2. A comparison of the predicted (red line) and observed (black line) SYM‐H of the composite model over 1 hr for
different individual storms. The blue line represents the predicted SYM‐H minus the observed value.

Figure 3. A comparison of the predicted (red line) and observed (black line) SYM‐H from the composite model over 2 hr for
different individual storms. The blue line represents the predicted SYM‐H minus the observed value.
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Figure 4. A scatter plot of the observed and predicted SYM‐H indices from the composite model, (a) for the 1‐hr prediction
and (b) for the 2‐hr prediction.

Figure 5. Inputs and outputs of the neural network on magnetopause current correction and τloss during storm 29. The (a) solar
wind dynamic pressure in units of nT, (b) the SYM‐H index, (c) parameter b from Equation 1, (d) SYMH∗ after deducting the
contribution of the solar wind dynamic pressure, and (e) the lifetime of the ring current particles. The red line is the 1‐hr model
result, and the blue line is the 2‐hr model result.
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than zero. During the magnetic storm SSC, there are instances when SYM‐H∗ is still greater than zero, indicating
that the correction for removing the effect of the magnetopause current needs improvement, as ring currents
should only yield negative SYM‐H∗. Figure 5e shows the lifetime of ring current particles, which is approxi-
mately 12 hr during quiet times for the 1‐hr model and 17 hr for the 2‐hr model. During magnetic storms, both
models yield similar results of around 6–7 hr, consistent with the BMR model. During quiet periods, the particle
composition and structure of the ring current are relatively stable, so the average lifetime of particle τloss also
remains nearly constant, which is consistent with physical expectations.

Equation 3 is derived from the coupling function given by Wang et al. (2014), which is based on MHD numerical
simulations. In this formula, the scale exponents fromWang et al.’s (2014) coupling function are set as adjustable
parameters. The values of each parameter, after training on observations, are shown in Table 4.

The parameters in Equation 3 determined by the 1‐hr and 2‐hr models are similar, except for β, which charac-
terizes the rate of solar wind energy injection into the magnetosphere during quiet times. Compared to the values
provided by Wang et al. (2014), the scaling exponents for the particle number density n and sin ( θ2) show sig-
nificant variation. Specifically, one exponent increases from 0.24 to approximately 0.45, while the other rises
from 2.7 to around 8.0.

Figure 6. The solar wind parameters and ring current energy injection function. (a) The solar wind number density, (b) the
solar wind velocity, (c) the magnetic field in the Y–Z plane, (d) the clock angle, (e) the energy coupling function
corresponding to Equation 2, (f) the correction factor of the energy injection function, and (g) the energy injection rate of the
ring current.
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Figure 6 shows the solar wind parameters and the corresponding ring current energy injection function in
Equation 3 during storm 29. Figure 6a shows the variation in the solar wind number density. Most of the time, the
value remains below 10 cm− 3. During a minor magnetic storm (on the 2nd day), N increases to approximately 20
cm− 3. During the major magnetic storms (between the 5th and 6th days), N rises significantly to nearly 60 cm− 3

and remains elevated for an extended period. Figure 6b shows the solar wind velocity, which ranges from 300 km/s
to 800 km/s. At the start of the large storm, the solar wind velocity suddenly increases to more than 600 km/s.
Compared to N, the variation in the solar wind velocity is less pronounced, with the maximum value being about
twice the minimum value. Figure 6c shows the magnetic intensity in the Y–Z plane. During quiet periods, BT
remains below or equal to 10 nT. At the start of the magnetic storm, BT rapidly increases to beyond 40 nT, peaks
close to 60 nT, and remains elevated throughout the main phase. Figure 6d shows the variation in sin ( θ2) , which
oscillates between zero and one. During themain phase, sin ( θ2) = 1, indicating that the southern component of the
solar wind magnetic field BZ is dominant and the injection of ring current energy effective. Figure 6e shows the
energy injection function calculated using the parameters and formula given in Table 3. The unit used here is nT/
min, which indicates by how many nT per minute the injected energy can reduce the SYM‐H index. Most of the
time, the energy injection function is less than 1 nT/min. It increases significantly at the onset of the magnetic
storm, reaching about 6 nT/min during the main phase. After entering the recovery phase, it remains at around
4 nT/min for a period of time. Meanwhile, SYM‐H remains unchanged at − 200 nT, as shown in Figure 5b.
Figure 6f shows the corrected coefficient of energy injection of the ring current, denoted as c in Equation 3, and
indicates that the energy injection also depends on the state of the magnetosphere. Other than during the recovery
phase and quiet times, the scaling coefficient remains close to unity for both the 1‐hr and 2‐hr models. During
magnetic storms, c decreases slightly to around 0.7 for both models. During quiet periods, the injection of ring
current energy is quite stable, so the parameter c remains unchanged. Figure 6g shows the net energy injection
given by Equation 3. The energy injection is usually less than 1 nT/min, but during the magnetic storm, it reaches
about 4 nT/min.

4. Discussion
The ring current plays an important role in the magnetospheric current system, with its intensity modulated by the
solar wind. Plasma and energy from the solar wind can be injected into the inner magnetosphere, leading to an
increase in the total energy and intensity of the ring current and a rapid decline in the SYM‐H index. This
study presents a model for predicting SYM‐H based on the total energy balance of the ring current (Burton
et al., 1975; Ji et al., 2023). Specifically, the solar wind–magnetosphere energy coupling function proposed
by Wang et al. (2014) is used as the energy injection function in the model, with the scaling exponents optimized.
The forecast accuracy of the new model is improved by about 7%(1‐hr) and 6% (2‐hr) over that of Ji
et al. (2023). The predicted RMSE decreases significantly for severe magnetic storms, and the tendency for the
predicted SYM‐H to be larger than the observed SYM‐H during the main phase of large storms is eliminated.
The improved prediction results indicate that the new energy injection function can more accurately describe the
plasma and energy transport process from the magnetotail to the ring current during a magnetic storm. We will
discuss the physical significance of the model parameters and analyze the sources of prediction errors in this
section.

4.1. Energy Injection Function

During a magnetic storm, the energetic particles in the ring current are primarily injected from the magnetotail
current sheet. Therefore, the energy injection function is closely related to both the plasma state of the current
sheet and the intensity of the driving electric field. Moreover, the solar wind conditions directly influence the
plasma state within the current sheet. Consequently, this model facilitates the identification of a quantitative

Table 4
The Concrete Equations for the Energy Injection Functions of Different Models

Model γ1 γ2 γ3 γ4 β Equation

1‐hr 0.43 1.74 0.92 7.8 0.09 Cf ∼ n0.43V1.74B0.92T [sin7.8 ( θ2) + 0.09]

2‐hr 0.46 1.73 0.91 8.3 0.06 Cf ∼ n0.46V1.73B0.91T [sin8.3 ( θ2) + 0.06]
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relationship between the ring current energy injection function and the solar wind parameters. Borovsky
et al. (1998) used observations of many years from various satellite pairs find statistical relations between the
solar wind and current sheet as follow: nCS = 0.292n0.49SW ,TCS = 2.17 + 0.0223VSW which are also widely used
as boundary conditions in ring current numerical mode (Y. Yu et al., 2024) Therefore, the scaling exponent of Cin
with respect to n should be 0.5 0.49, which is very close to the 0.43 and 0.46 found for the model. Furthermore,Cin
shows a linear correlation with the kinetic energy or temperature associated with the thermal motion of particles
within the current sheet, while the temperature in this region shows a linear dependency on vSW (solar wind
velocity). Thus, Cin depends linearly on vSW according to the relationship between the temperature and solar wind
velocity. When the BZ component of the IMF is pointing southward, magnetopause reconnection occurs. To
ensure the conservation of magnetic flux during reconnection, the driving electric field must satisfy Ey = vSWBz.
Consequently, the energy injection also depends linearly on Ey, so Cin ∼ vSWBz. The contributions of the current
sheet temperature and the driving electric field to the energy injection of the ring current are essentially inde-
pendent. When considered together, their combined effect is approximately multiplicative, meaning
Cin ∼ n0.49v2SW BZ . If the southward IMF is dominant, then Cin ∼ n0.49v2SW BZ also holds true. This expression
closely aligns with the values presented in Table 3, which were derived from data after training, demonstrating
that the new model accurately captures the underlying physical laws.

Note that the scaling factors for sin ( θ2) in the 1‐hr and 2‐hr model formulas in Table 3 are 7.8 and 8.3,
respectively. These values are significantly higher than the 2.7 reported by Wang et al. (2014) and other re-
searchers. A larger scaling factor indicates that substantial energy injection occurs only when the BZ component is
strongly dominant in the IMF (i.e., sin ( θ2) ≈ 1). Conversely, when sin ( θ2) < 1, the final value approaches zero due
to multiple exponentiation, implying that energy entering the magnetosphere is less likely to be injected into the
ring current region. This also suggests that the energy coupling functions vary for different magnetospheric
energy processes. During substorms, energy dissipation primarily occurs in the cusp region with minimal energy
injection (Akasofu, 1981). In contrast, during magnetic storms, energy is dissipated in the deeper ring current
region with substantial energy injection, requiring more stringent solar wind conditions (a high IMF dynamic
pressure and dominant BZ) to achieve effective energy injection.

In addition, the β values for the 1‐hr and 2‐hr models are significantly lower than the 0.25 reported by Wang
et al. (2014), with respective values of 0.09 and 0.06. The parameter β characterizes the energy injected into the
inner magnetosphere via the diffusion process, which accounts for about 10% of the convective energy injection
(∼1). Furthermore, Wang et al.’s (2014) coupling function represents energy penetration at the magnetopause,
while this study focuses on energy injection into the ring current within the inner magnetosphere. Consequently,
the energy transport due to the diffusion process is less significant than that due to the convective process,
resulting in a smaller β than that reported by Wang et al. (2014). The discrepancy between the 1‐hr model (0.09)
and the 2‐hr model (0.06) may be attributed to truncation errors associated with the discrete format.

In the composite model, the energy injection described by the formula in Table 4 is not entirely directed into the
ring current. The expression for Ein includes a regulatory factor c, which controls the final proportion of energy
injected into the ring current. Figure 6f shows that during the main phase, the coefficient c is smaller than during
quiet times, indicating that some of the injected energy is lost during the magnetic storm. This is because an
enhanced convection electric field and the compression of the magnetopause during a magnetic storm can cause a
portion of the ring current energetic particles to drift directly out of the magnetopause after being injected from the
magnetotail. Therefore, not all of the injected energy contributes to forming a symmetric ring current. The time
scale of this loss is roughly equivalent to the time it takes for the energetic ring current particles to drift from the
magnetotail to the sunward magnetopause, as also discussed by Ji et al. (2023). In addition, if substorms occur
concurrently with magnetic storms, they will contribute to the energy budget associated with substorms, which is
not accounted for in the current model. A comprehensive model should fully consider all energy inputs and losses
and be capable of simultaneously predicting both the SYM‐H index and the AL index. However, the relationship
between magnetic storms and substorms remains inconclusive. To develop a more advanced model, it is
necessary to incorporate neural networks to capture the nonlinear interactions between them.

Another advantage of the composite model is its use of the energy coupling function to construct a quantitative
model, thereby providing an effective method to identify an accurate formula for the coupling function. More-
over, while the general form of the coupling function is similar for different geomagnetic disturbance parameters,
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the scale exponents should vary. A practical energy coupling function should be tested within the model.
Regarding ring current dynamics, since the composite model specifies the exact form of the energy injection
function based solely on solar wind parameters, we can calculate potential changes in the SYM‐H index at any
position along the Sun–Earth line (as depicted in Figure 6e) and estimate arrival times at Earth based on the solar
wind speed. This capability allows researchers to predict future magnetic storm intensities, which is of great
significance for space weather forecasting. The composite model not only provides precise SYM‐H predictions
within 1–2 hr but also establishes an accurate relationship between solar wind parameters at any location and their
corresponding influence on energy injection into Earth's magnetospheric ring current.

4.2. The Lifetime of Ring Current Particles

The recovery phase is primarily characterized by the decay of the ring current's total energy. During this phase, the
SYM‐H index gradually returns from the minimum to its normal value. Understanding the dynamics of the re-
covery phase is crucial for space weather prediction. SYM‐H observations reveal that the recovery phase can be
divided into two parts: a fast recovery phase and a slow recovery phase. The total energy loss time, τloss, obtained
from the composite model also reflects the fast and slow recovery phases. In Figure 5e, the blue and red lines
represent τloss as measured by the 1‐hr and 2‐hr models, respectively. During quiet times and the slow recovery
phase, both models estimate τloss to be greater than 10 hr — specifically, τloss is 12 hr for the 1‐hr model and 17 hr
for the 2‐hr model. However, both models yield similar results during the main phase of magnetic storms with a
τloss value of approximately 7 hr, which is consistent with the BMR model (dashed line).

The formation of fast and slow recovery phases can be explained as follows: during a large magnetic storm, the
increased influx of oxygen ions from the ionosphere energizes them and injects them into the ring current. As a
result, the main component of the ring current energy gradually shifts from hydrogen ions to oxygen ions. The
cross‐sectional area for charge exchange between oxygen ions and neutral atoms is larger than that for hydrogen
ions, meaning that oxygen ions experience less lifetime through charge exchange than hydrogen ions. After the
main phase, oxygen ions rapidly lose energy, followed by a slower loss of hydrogen ions, leading to a fast re-
covery and a slow recovery of the SYM‐H index. Observations and numerical simulations support this inter-
pretation (Daglis et al., 1999; Fok et al., 1991; Yue et al., 2019). However, the loss of energetic particles in the ring
current involves complex processes, including ionospheric particle precipitation, plasma Coulomb collisions, and
magnetopause drift loss, all of which also influence the formation of the fast or slow recovery phase.

In addition, the τloss provided by the 1‐hr composite model is 12 hr, which is significantly lower than the 17 hr
reported for the 2‐hr model. This discrepancy arises from differences in the time advancement steps, which
correspond to variations in β within the ring current energy injection function (as specified in Table 4). Assuming
that the IMF has no southward component during quiet times, the energy balance of the ring current primarily
depends on the diffusion‐induced energy input (represented by the parameter β) and loss equilibrium.We can then
define

SYMHeq = − Ein × τloss (6)

where SYM‐Heq is the equilibrium value given by the quiet time observation data, so the 1‐hr and 2‐hr values
should be the same. The difference in time step does not affect the validity of the above formula. At this time, the
product of Ein × τloss for the 1‐hr model is equal to that of the 2‐hr model, that is, 0.09 × 12 ≈ 0.06 × 17. This
supports the conclusion that the difference in time step is the reason for the variation in β and Ein.

4.3. Errors

The composite model demonstrates a satisfactory level of prediction accuracy for SYM‐H. However, it is
important to discuss the underlying factors contributing to these discrepancies in order to enhance the model's
accuracy.

4.3.1. Effects of Substorms

The substorm process releases large amounts of energy into the magnetospheric system including to the ring
current (Jang et al., 2021; Sandhu et al., 2018). H. Fu et al. (2023) found that intense substorms can also cause a
∼3nT/Hr geomagnetic decrease. Figure 7 shows the variation curves of the SYM‐H index and the AL index,
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using magnetic storm 29 as an example. The AL index primarily indicates the intensity of nightside substorm
activity. There is a strong correlation between changes in SYM‐H and the AL index, with significant variations in
SYM‐H often accompanied by substantial changes in the AL index. Substorm activity exhibits some degree of
randomness, which is not accounted for in the current model and may lead to errors. Shen et al. (2002) estimated
the intensity of the driving electric field on the night side using the AL index and ionospheric parameters,
calculated the ring current energy injection, and proposed a quantitative model relating the SYM‐H and AL
indices. These concepts could provide valuable avenues for enhancing our composite model.

To investigate the energy contribution of substorms to ring current, we attempted to use the AL and AU indices as
inputs to the neural network to modulate the energy injection into the ring current in the model. However, we
found that incorporating substorm indices did not improve the model's performance. We speculate that this is
because substorms are relatively stochastic processes and do not necessarily lead to an increase in ring current
energy. Therefore, a simple fully connected neural network is insufficient to represent the relationship between
geomagnetic storms and substorms. To account for the influence of substorms, a more complex model structure is
required, one that incorporates stochastic mechanisms. This exceeds the capability of the current model and will
be the focus of our future work.

4.3.2. Response Time

The energy injection function of the composite model is calculated from the prevailing solar wind conditions at
the magnetopause. However, the actual solar wind does not directly penetrate the sunward magnetopause to enter
the ring current but first enters the magnetotail before being injected. This process introduces a time delay of
20∼30 min (Beharrell & Honary, 2016; Maggiolo et al., 2017; Palmroth et al., 2006) that the current model does
not account for, which can lead to certain errors.

Regarding the time delay of the SYM‐H index relative to solar wind conditions, we adjusted the model's energy
injection to Equation 7:

Ein = cA∫
t+Δt− τ

t− τ
nγ1Vγ2Bγ3T [sin

γ4 (
θ
2
) + β] dt (7)

where τ is the delay time. For time delay equating 10 min, the RMSE of predictions show a little decrease, but for
time delay 20 and 30 min, the RMSE of predictions become even more larger (Table 5), indicating that during

Figure 7. The SYM‐H and AL index during Storm 29.
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magnetostorm, the time delay of solar wind from magnetopause to magnetail
is about 10 min, no more than 20 min.

4.3.3. Errors in Solar Wind Observations

Solar wind observations are not completely accurate, which contributes to
errors in the model. Observation satellites cannot be positioned at the subsolar
point of the magnetopause, and solar wind data are derived from satellites
located near the solar–Earth Lagrange point. This inevitably results in de-
viations, particularly in shock wave structures, where even minor discrep-
ancies can lead to significant errors. Figure 8 shows the predicted SYM‐H
values, observed values, corresponding errors, and solar wind dynamic
pressure. The position indicated by arrow A corresponds to the sudden
commencement of the magnetic storm and also to a break in the solar wind
dynamic pressure. There is a noticeable time difference between the green
line (solar wind dynamic pressure) and the black line (SYM‐H), which causes
the model to struggle with the SSC position. This results in a significant
forecast error after 1 hr, as indicated by arrow B in Figure 8. The frequent
discontinuities in the solar wind dynamic pressure during magnetic storms
contribute to large deviations in the forecast results.

In addition, some of the larger deviations are related to sudden changes in
SYM‐H on small time scales, while the corresponding solar wind dynamic
pressure shows no significant variations. This indicates that such changes are

not caused by solar wind dynamic pressure but rather by transient processes occurring within the magnetosphere.
Possible processes include significant drift loss of ring current particles at the magnetopause, disruptions in the
magnetotail current sheet, and field‐aligned currents. The current model cannot accurately capture these physical
processes. In the future, we will consider integrating these processes into our model. For now, we have made
minor improvements to the model in an attempt to reduce these deviations. Specifically, we corrected the current
SYM‐H∗ by constructing a neural network that uses the solar wind parameters and SYM‐H index from the
preceding 20 min as inputs, with the output being the corrected SYMH∗(t) = SYMH(t) − b(t)PS(t)

(1/2)
+ f ,

where f is the corrected term. The Table 6 shows the RMSE results of the neural network's predictions after the

Table 5
The RMSE of 1‐hr Model After Considering Time Delay of Solar Wind Into
Ring Current

No. 10 min delay 20 min delay 30 min delay

26 3.6 3.9 3.9

27 7.0 7.4 7.3

28 5.2 5.6 5.6

29 11.5 13.7 14.0

30 8.6 8.4 8.3

31 6.4 6.4 6.4

32 7.6 7.8 7.8

33 11.1 11.8 12.7

34 3.7 3.6 3.6

35 5.3 5.1 5.4

36 4.3 4.5 4.4

37 7.0 6.9 7.1

38 4.8 4.7 4.6

Mean 6.6 6.9 7.0

Note. Delay time (\tau = 10, 20, 30) minutes.

Figure 8. For Storm 29, the figure shows the predicted SYM‐H values (red dashed line), observed SYM‐H (black line), the
errors between the predicted and observed values (blue line), and the solar wind dynamic pressure (green line).
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correction. It can be seen that the results have indeed improved by approxi-
mately 3%. However, achieving further optimization will require more in‐
depth research.

5. Conclusion
In this study, we aim to further optimize the composite model for predicting
the SYM‐H index based on the energy balance approach proposed by Ji
et al. (2023). Specifically, we have developed a novel ring current energy
injection function based on the existing solar wind ‐ magnetosphere energy
coupling function, which follows a multi‐parametric form derived from
interplanetary solar wind plasma parameters. The parameters of the energy
injection function and the ring current particle lifetime function were deter-
mined through training with 20 magnetic storm observations of solar wind
and SYM‐H data. Compared to the original composite model, the modified
model demonstrates enhanced accuracy in both 1‐hr and 2‐hr SYM‐H pre-
dictions, with the new RMSEs of 6.9 and 8.9 nT, respectively, representing an
improvement of approximately 0.5 nT. Furthermore, in addition to providing
improved prediction accuracy, the new model identifies the scale exponents
in the ring current energy injection function. This enables direct calculation of
the SYM‐H decline rate for space weather predictions using solar wind pa-
rameters. Moreover, the determined exponents are consistent with the

observation about dependence of plasma parameters in the magnetic tail current sheet on the solar wind conditions
(Borovsky et al., 1998), demonstrating that the new physically‐based model effectively captures the laws gov-
erning large‐scale processes related to solar wind–magnetosphere interactions from a macroscopic perspective.
The estimated lifetime of the fast recovery phase from the new model is approximately 6 hr, while the slow
recovery phase takes more than 10 hr, consistent with previous analyses. It should be noted that the particle
lifetime obtained here is a combined effect of all particles, and the current model does not distinguish the con-
tributions of different types of ring current particles. Future research will focus on modeling the different
components of ring current particles separately, aiming to uncover the true physical laws from historical
observational data. This approach is expected to better capture the physical processes governing ring current
evolution and provide improved forecasting results. Furthermore, the model's prediction accuracy remains
insufficient when sudden changes in SYM‐H occur due to certain shock structures in the solar wind, abrupt loss in
magnetopause, or other transient large scale current structures in the magnetophere. This is a primary source of
errors in the composite model which need further study.

Data Availability Statement
Data including IMF, particle number density, velocity fields in solar wind, and SYM‐H index from 2000 to 2019
are downloaded from the NASA/GSFC’ Space Physics Data Facility's OMNI Web service (https://cdaweb.gsfc.
nasa.gov/pub/data/omni/). The description of high resolution OMNI data set can be found at (https://cdaweb.
gsfc.nasa.gov/misc/NotesO.html#OMNI_HRO_1MIN) .
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