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« Baseline: Both semi-distributed and lumped models tend to underestimate streamflow
in low-flow conditions.
 Lumped models outperform semi-distributed models in normal and high-flow periods.

3) Results

« Baseline: All models achieved NSE = 0.85 during the validation period, with CNN-LSTM
performing best (NSE = 0.94). However, performance varied across models, particularly for
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