## Martian Bow Shock Oscillations Simultaneous Observations from Tianwen-1 and MAVEN

#### MOMAG Team

#### Yuming Wang, Long Cheng

University of Science and Technology of China (ymwang@ustc.edu.cn) Collaborators: Y. Ma (UCLA), R. Lillis (UC Berkeley), J. Halekas (U Iowa), B. Langlais (CNRS, France), T. Zhang (SRI, Austria), G. Wang (HIT), S. Xiao (HIT), Y. Chi (DSEL), A. Zhang (NSSC)

EGU, Vienna 2025.4.28

### The Magnetometer (MOMAG) onboard Tianwen-1 Orbiter

- 2020.7 Launch
- 2021.2 Arriving at Mars
- 2021.5 Landing
- 2021.11 MOMAG starting to operate routinely
- Two fluxgate sensors on a 3.19m long boom
- In-flight calibration to remove the interference from the spacecraft
  (Wang et al., EPP, 2023; Zou, et al., SCTS, 2023; Wang et al., JGR, 2024)

#### MOMAG Level2(2C) Data







- 1 Hz and 32 Hz (full time since 2023) data
- Updated to 2024.8
- For more details, visit MOMAG Team website: https://space.ustc.edu.cn/dreams/tw1\_momag/

#### **Bow shock: The First Gate for SW impacting Mars**



w/ intrinsic magnetic field



w/o intrinsic magnetic field

### The factors influencing the BS

EUV, Dynamic pressure, Mach number, IMF orientation, Martian crustal fields, etc.

- EUV and Mach number are the primary drivers
- Dynamic pressure, crustal field
  are secondary
- IMF rotation also has a significant effect



Garnier et al., JGR, 2022

### **BS under Extreme SW Conditions**

Strong SW due to the passage of an ICME

## **'Disappeared' SW due to a trailing rarefaction region**

#### **Radial IMF**



- Boundaries vary dramatically
- Ion escape enhanced by more than one order of magnitude

- MAVEN completely behind BS inside the magnetosheath
- Nightside ionospheric expansion was significant

- Induced magnetosphere degenerated
- No dayside BS

### Martian Bow Shock Crossings



- Data during 2021.11-12 are used for bow shock study
- 7.8 hr an orbit for TW1, and about 4 hr for MVN

## **Single-Crossing Events**



### **Multiple-Crossing Events**



Cheng, Lillis, Wang et al. GRL, 2023



### **Multiple-Crossing Events**



### Multiple Crossings due to the BS Oscillations





Oscillations for the two events were driven by

- IMF rotations
- Dynamic pressure variations

The response timescale less than one minute

The timescale of the oscillations

at minutes

□ The amplitude of the oscillations

at hundreds of kilometers

### **BS** Oscillations under Weakly Disturbed Solar Wind



#### **Causes of Such Oscillations**

#### Two possible causes

- 1. Crustal field due to the rotation of Mars
- 2. Still being the external solar wind variations





#### **Causes of Such Oscillations**

Is it possible to be triggered at a certain IMF condition? ---- No

Discrete aurora  $\rightarrow$  enhanced magnetic reconnection

- Strongest crustal field at dusk-side
- IMF is -y oriented

Schneider et al., 2021; Xu et al., 2022; Johnston et al., 2023; Bowers et al., 2023





#### **Causes of Such Oscillations**

#### 2. Still being the external solar wind variations?



#### Low Mach number $\rightarrow$ Weak BS $\rightarrow$ More easily be oscillated

#### Numerical Simulations using BATS-R-US by Dr. Yingjuan Ma (Ma et al., 2014)

For Event 3, two simulation cases: w/o vs. w/ the crustal field shifted forward



- Almost no difference between w/o and w/ crustal field
- Global minute-scale oscillations are reproduced

#### Numerical Simulations using BATS-R-US by Dr. Yingjuan Ma (Ma et al., 2014)

Multi-Crossing Event vs. a Single-Crossing Event

- Larger disturbance
- Higher Mach number
- Smaller oscillations

Mach number is a more sensitive parameter for BS oscillations. A weak BS is easily disturbed.



### Summary

- Tianwen-1 and MAVEN for the first time provide the simultaneous observations of the magnetic field environment of Mars.
- The Oscillations of Martian BS as well as their causes are investigated through the simultaneous data. A weaker BS is more easily disturbed.
- Except the BS dynamics, such data may provide new insight into other topics, like (1) response of induced magnetosphere, magnetotail, and/or ionosphere, (2) atmosphere escape, (3) turbulence evolution, etc. See more at posters: PS1.4 (5823), PS1.5 (2747, 5681, 7760),









# Future: Era of Multi-Obs. Thank you for your attention! **Double-Point Obs.** Four-Point Obs. **Five-Point Obs.** 2021.11 2026 2029 Tianwen-1/Orbiter ESCAPADE **Tianwen-3/Orbiter** MAVEN