General Assembly

Seismicity and Groundwater Dynamics: Impacts on the Critical Zone in spring of center Mexico

² Departamento de Dinámica Terrestre Superficial, Instituto de Geología, Universidad Nacional Autónoma de México. ³ Posgrado en Ciencias de la tierra, Instituto de Geología, Universidad Nacional Autónoma de México. For any questions please contact: ataliasierragarcia@gmail.com

Figure 1. Location of Agua Hedionda spring and the earthquake of september 17, 2017 (SSN, 2017)

Fm Tayscac Fm Balane Fm Betcale * ~ · · 125 2 5 5 7.5 10

Figure 2. Geological section at the spring (IMTA, 2018)

Introduction

Methodology

The Agua Hedionda spring is located in Cuautla, Morelos, México. Within the regional groundwater flow water Balsas.

Geology that influences the spring is composed of:

- 1. Volcanic rocks: Andesitics
- 2. Sedimentary rocks: limestones (semi-confining barrier) with gypsum lenses

The 7.1 magnitude earthquake, which was located approximately 50km from the spring, had a substantial impact on the physical and chemical properties of the spring.

Objective

To evaluate the physical and chemical changes in the Agua Hedionda spring related to the 7.1 magnitude seismic event of September 19, 2017.

Figure 3. Sampling at the Agua Hedionda spring

Bibliographic compilation

Chemistry

1995-2018

Flow rate

1986-2018.

Isotopes

²H, ¹⁸O of the years 1986, 2018. ³H y ¹⁴ C from 2018.

• Sampling at the spring on 2022:

Chemistry, flow rate and isotopes

• Analysis and results:

I compared the changes in the spring through time, before and after the earthquake.

Betsabé Atalía Sierra-García¹,Oscar Escolero², Selene Olea-Olea², Priscila Medina-Ortega³. ¹ Posgrado en Ciencias de la tierra, Instituto de Geología, Universidad Nacional Autónoma de México.

Analysis and results

earthquake.

Figure 5. Variation of ions with respect to the time of the Agua Hedionda spring.

Figure 7. Concentration 14C and 3H isotopes. I did the correction of residence time only with my sampled data, with the IAE model according to Hann and Plummer (2016). With the correction the residence time of Agua Hedionda spring is 9878 years.

Conclusions

The earthquake had an important impact in the characteristics on the Agua Hedionda spring. The physical and chemical changes in the water suggest a mixture of components within the system or a temporary change in the preferential flow direction, as indicated by the trend of the chemistry and flow rate towards recovery.

Han, L. F., & Plummer, L. N. (2016). A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. In Earth-119–142). (Vol. 152, Elsevier. Reviews Science pp. https://doi.org/10.1016/j.earscirev.2015.11.004 Instituto Mexicano de Tecnología del Agua, Comisión Estatal del Agua, & Visión Morelos. (2018). Caracterización de manantiales impactados por el sismo en el Estado de Morelos. Servicio Sismológico Nacional. (2017). Reporte especial del sismo de 19 de Septiembre de 2017, Puebla-Morelos (M 7.1).

In Figure 4 we can observe that after the earthquake the flow received was the lowest in its history.

On other important changes, in Figure 5 we can see the change on the spring's chemistry. All major ion concentrations dropped.

In both graphics, after the earthquake, show a trend of recovery the major ion concentrations and the flow rate.

(Figure The recharge zones calculated stable with concentrations. The variability recharge zones in the calculated time frames was low. So the changes of the chemistry of the spring were the result of a postinfiltration phenomenon and not a change in the recharge zone.

With tritium and ¹⁴C concentrations (Figure 7) the two samples from 2018 show higher concentrations of ¹⁴C than the one from 2022. And on the other hand, the 2022 sample shows higher concentrations of ³H. This could tell us about a mixture between a younger groundwater flow and an older one.

Bibliography

Abstract

