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•High Mountain Asia (HMA), often known as the "Third pole" (Yao et al., 2012), has the most glaciers outside 
the polar zone (Consortium, 2017).

•Glacier meltwater increasingly affects streamflow that feeds 1.5 billion downstream (Yao et al., 2012).
•Over 15,000 glaciers in the Yarlung Zangbo–Brahmaputra basin (YB) feed a trans–boundary river from 
China to India and Bangladesh into the Indian Ocean, supporting 80 million people.

•The impact of glacier changes on YB catchment’s runoff is unknown.
•The glacier inventory requires urgent updating and revisions.  
•Therefore, the research's primary objectives are: 
(1) Establish a 2020 glacier inventory for debris-free glaciers in the YB; 
(2) Study glacier area changes from 1970s to 2020; 
(3) Calculate glacier surface elevation change, and geodetic mass balance in the YB and its catchments;  
(4) Estimate glacier meltwater contribution.

Introduction

•The Yarlung Zangbo–Brahmaputra basin (YB) stretches from 81.97°E to 97.87°E east to west and 23.32°N to 
31.48°N from south to north. 

•The Brahmaputra River originates from the Angsi Glacier, in China, and flows towards the southeast. 
• It is a trans–boundary basin covering parts of China, India, Nepal, Bhutan, and Bangladesh. 
•The YB is divided into nine main catchments (ICIMOD, 2021). 
•The Yarlung Zangbo catchment (hereafter YZ_m) is largest catchment in the YB. It is further divided into nine 
sub–catchments.

Study area

•A total of 15,032 glaciers were identified in the YB, covering 9,081 ± 12.59 km² as of 2020.
•Over the past 50 years, the YB has lost 3,557.3 ± 758.39 km² of glacier area, at an average rate of –0.56% a⁻¹.
•Glacier shrinkage shows significant spatial heterogeneity across the basin, reflecting the influence of local to-
pography and climatic conditions.

•Glaciers in the eastern and southwestern YB exhibit more negative glacier mass balance (GMB) compared to 
those in the western region.

•Seasonal analysis indicates greater glacier mass loss during the pre-monsoon season than in the post-monsoon, 
highlighting strong seasonal sensitivity.

•The contribution of glacier meltwater to runoff has increased in recent years.
•Overall, the findings highlight rapid and spatially variable glacier recession in the YB, underlining the need for 
continued monitoring and adaptive water resource management.

Conclusion

Datasets and Methods

Dataset Time Spatial Resolution Sources and references

https://earthexplorer.usgs.gov
(accessed on 10 March 2023)

h�ps://browser.dataspace.copernicus.eu
(accessed on 10 March 2023)

h�ps://portal.opentopography.org
(accessed on 02 September 2024)

h�ps://portal.opentopography.org
(accessed on 02 September 2024)

https://nsidc.org/data/atl06/versions/5
(accessed on 10 November 2023)

Radar Penetration in snow. 2000 1° × 1° (Jiang, 202)
The glacier surface elevation changes rate data (DhASTER ) 2000–2019 [1] 100 m (Hugonnet et al., 2021)

Discharge data (GloFAS-ERA5) 2000–2023 0.1° × 0.1° (Harrigan et al., 2020)

GGI–18 (Consortium, 2023; Sakai, 2019)

TPG1976, TPG2001, TPG2013 1970s, 2001, 2013 (Ye et al., 2017)
TPG2018 (Ye, 2019)

CGI–2 2004–2011 (Guo et al., 2015)

Outline of basin, catchments and sub-catchments (Guo et al., 2015; ICIMOD, 2021a, 2021b)

ICESat–2 ATL06 October 2018–June 2023 ~17 m

NASADEM 2000 30 m

Copernicus DEM (GLO30) December 2010–November 2015 30 m

Landsat images 2013–021 30 m

Sentinel–2 images 2016–2021 10 m

Datasets : We used the Landsat 8 Operational Land Imager (OLI) and the Sentinel 2 images to update the 
glacier inventory in 2020. Further publicly available, DEMs including the NASADEM (JPL, 2020) and the Co-
pernicus DEM (GLO30) (Agency, 2024), laser altimetry data from the ICESat–2, and elevation change data-
sets from (Hugonnet et al., 2021) were used to study GMB. In order to validate our GMB results we used in–si-
tu observations for the six selected glaciers from literature. Discharge data was used with GMC data to esti-
mate glacier meltwater contribution to runoff. 

Methods
•Glacier mapping : The band ratio technique was used in the Google earth engine to map debris-free glaciers. 
The TPG1970s dataset was compared to know the area change from 1970s to 2020.

•Geodetic glacier mass balance : The geodetic glacier mass balance was estimated using DEM differencing and 
altimeter method. In-situ observations from six glaciers were used to validate the GMB results.

•Glacier meltwater contribution : The glacier meltwater contribution was estimated using the discharge data 
from GloFAS-ERA5 on the outlets of catchments and the glacier mass change from geodetic mass balance. 

Results

Glacier area change
▪We identified 15,032 pieces of glaciers 
(> 0.01 km2) covering 9,081 ± 12.59 
km2 of glacier area across different 
catchments of the YB.

▪The glacier area shrank from 12,638.3 
± 758.3 km2 to 9,081 ± 12.09 km2 be-
tween 1970s and 2020.

▪A total of 3,557.30 ± 758.39 km2 gla-
cier area lost, with an average rate of 
–0.56 % a–1. 

▪The glacier area in the YB is shrinking 
with spatial heterogeneities.

Glacier mass balance
▪Glaciers located in the Eastern and 
Southwestern parts of the YB are ex-
periencing more negative GMB than 
those on the western edges.

▪The result derived from DhGLO30–NASA-

DEM (2013 – 2013) shows, the GMB was 
–0.42 ± 0.02 m w.e.a–1, and GMC was 
–4.61 ± 0.41 Gt a–1.

▪The results from DhICESat–2–GLO30 (2013 
– 2023) show, the GMB was –0.34 ± 
0.03 m w.e.a–1, and the GMC was –3.79 
± 0.29 Gt a–1.

▪The GMB derived from DhASTER for 
2000–2004 was –0.36 m w.e.a–1 corre-
sponding to GMC –3.95 Gt a–1, which 
increased up to –0.64 m w.e.a–1 GMB, 
corresponding to –7.07 Gt a–1 of GMC 
in 2015–2019.

Annual and seasonal glacier mass bal-
ances from 2018 to 2023
▪The annual and seasonal GMB calcu-
lations from DhICESat–2–GLO30 show that 
glacier recession increased in the YB 
from 2018 to 2023.

▪The maximum glacier recession was 
observed in 2022, where GMB was 
–0.41 ± 0.03 m w.e.a–1, the correspond-
ing GMC was –4.54 ± 0.39 Gt a–1.

▪The glacier recession increases from 
the pre–monsoon to the post–mon-
soon season.

▪The seasonal variation in the GMB 
shows most significant increase in 
glacier mass loss in the pre–monsoon 
season.

Glacier contribution to runoff
▪The glacier meltwater contribution to runoff in the YB was 0.45% over 2000–2004, while it increased 
dramatically to 1.05% between 2015 - 2019.

▪The highest glacier melt contribution to runoff was observed in the Yarlung Zangbo catchment.
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