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Summary
➥ Observation level. Each Argo float measures temperature (T ) and

salinity (S) with the same sensor ⇒ their measurement errors (the
nugget) are typically correlated.

➥ Model level. Classical bivariate spatial models force the nugget
matrix to be diagonal. As a result, latent T–S dependence is
overestimated.

➥ Our extension. Add a nugget-correlation parameter ρε and fit with
Gaussian or Normal-Inverse-Gaussian (NIG) driving noise. Predictions
combine the Matérn-SPDE with a moving-window scheme.

➥ Tools. Implemented in the open-source ngme2 R package;
moving-window SPDE estimation scales to ∼100k profiles.

Random fields with Matérn
covariance

A class of commonly used isotropic covariance functions for geostatistical ap-
plications is the stationary Matérn covariance family:

c (s, s′) =
σ2

Γ(ν)2ν−1
(κ ∥s− s′∥)ν Kν (κ ∥s− s′∥)

where Kν(·) is the modified Bessel function of the second kind, ν > 0 is the
shape parameter, κ > 0 is the spatial scale parameter, and σ2 is the variance
of the covariance function.

SPDE Approach

A Gaussian process X(s) with Matérn covariance function solves the stochastic
partial differential equation (SPDE) (Whittle, 1963)(

κ2 −∆
)α

2
X(s) = Ẇ , where s ∈ D := Rd

where α = ν + d/2 and ∆ is the Laplacian, and Ẇ is Gaussian white noise
on a general domain D.

• Using the connection between SPDE and Gaussian processes with Matérn
covariance functions, described in (Lindgren et al., 2011), we can use
computationally efficient approximation of X(s) on bounded domain
D ⊂ Rd.

• We will consider the following extension introduced in (Bolin, 2014):(
κ2 −∆

)α
2
X(s) = Ṁ, where s ∈ D := Rd

where Ṁ is non-Gaussian white-noise, specifically, we assume M to be a
type-G Lévy process.

• A Lévy process is of type-G if its increments can be represented as
location-scale mixtures:

γ + vµ +
√
vz,

where γ ∈ Rp and µ ∈ Rp are parameters, z ∼ N (0, 1), and v is a
non-negative random variable. For the model in use, we assume µ = −γ.

Bivariate Matérn-SPDE
formulation

The general parametrization, introduced in (Bolin and Wallin, 2020) allows us
to separate control of variances, cross-correlations, and higher moments. For
bivariate model, the parametrization will be as follows:
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• where κi > 0 and αi > d/2, ci =
√
σ−2
i (4π)−d/2κ−2νi

i Γ (νi) /Γ (αi) for
i = 1, 2.

D(θ, ρ) =

(
cos(θ) + ρ sin(θ) − sin(θ)

√
1 + ρ2

sin(θ)− ρ cos(θ) cos(θ)
√
1 + ρ2

)

• ρ controls the correlation between X1 and X2 and θ the higher moments
for non-Gaussian models

• Here Ṁ is L2-valued independently scattered random measure, whose
components are mutually uncorrelated. It includes non-Gaussian processes,
as well as Gaussian noise.

• For the model in use, the Normal-Inverse Gaussian (NIG) driving noise will
be used and α is fixed to 2.

Simulation Study
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Figure: Simulation study results. (a) We compare the two Gaussian bivariate
SPDE models based on the measurement-noise covariance Σε. (b) Estimated
signal-to-noise ratio, σ2

1/σ
2
ε,1, from the simulation results. The horizontal line

shows the true value.

The mean value function m(s) is specified as (Roemmich and Gilson, 2009)

mi(s) = βi,0 + βi,xxc + βi,yyc + βi,xyxcyc + βi,x2x
2
c + βi,y2y

2
c

+
K∑
k=1

[
βi,ck cos

(
2πkt

365

)
+ βi,sk sin

(
2πkt

365

)]
,

(1)

s = (xi, yi) (with x and y corresponding to longitude and latitude, respec-
tively), xc := x−x∗ and yc := y−y∗ are spatial coordinates centered around
x∗ and y∗, and K is a predefined maximum number of harmonics K = 6.

Application: Argo float data

• Our analysis focused on Argo data collected annually from 2007 to 2020.
• First, we preprocessed the data and selected 1,349,863 profiles. We then

computed the monthly mean using the yearly data and equation (1).
Subtracting the monthly mean from the raw data, we then obtained
monthly residuals.

• Our final model fits the data from January over 14 years and treats them
as independent replicates.

Figure: Each 10°×10° cell (solid blue) is estimated with data inside its
20°×20° window (dashed). Overlap ensures smooth parameter fields. Grid
used for model fitting. Each grid box has an approximately equal surface
area. For the pressure level 300 dbar, there are 410 grid boxes; 106 are
omitted based on insufficient data. The remaining boxes are shown in blue.

Assume we have observations Yi = [Y1(si), Y2(si)]
T observed at locations

s1, . . . sn , where Yi satisfies

Y i = X(si) + ϵi ϵi ∼ N (0,Σi) for i = 1 . . . n

where Σi is now with correlation ρϵ:

Σi =

[
σ2
ϵ,1 ρϵσϵ,1σϵ,2

ρϵσϵ,1σϵ,2 σ2
ϵ,2

]
Here, X(s) = [X1(s),X2(s)]

T follows the multivariate Type G model spec-
ified earlier.

Figure: ρ̂ estimates at 300 dbar. Adding ρε lowers the dependence attributed
to ρ compared to the independent-nugget model.

Model Evaluation and Results

• Leave-one-out cross-validation inside each 10°×10° window was performed for
each grid.

• Predictive distribution approximated with 500 Gibbs samples (Gaussian) and
1000 samples (NIG) per left-out observation.

• Global scores were computed using the weighted mean over 111 000 profiles at
300 dbar (see table).

Model Temperature Salinity
MAE MSE CRPS SCRPS MAE MSE CRPS SCRPS

Gaussian correlated 0.340 0.315 0.259 0.607 0.0410 0.0048 0.0324 –0.454
independent 0.361 0.354 0.275 0.641 0.0436 0.0054 0.0336 –0.422

NIG correlated 0.356 0.368 0.268 0.609 0.0428 0.0055 0.0324 –0.462
independent 0.380 0.484 0.285 0.645 0.0456 0.0073 0.0345 –0.426

Table: Cross-validation results of the moving-windows model on global Argo data
for the pressure level 300 dbar. The lower values indicate a better fit.

Figure: Measurement noise correlation, ρε for proposed models at 300 dbar
pressure level. The models with the additional parameter reveal the hidden
dependence between the fields, indicating a possible underestimation of
dependence in usual models.

Conclusion

• Allowing ρε ̸= 0 sharpens fine-scale structure, and improves the uncertainty
quantification for global temperature and salinity predictions.

• After accounting for correlated nugget, Gaussian and NIG fits perform
similarly; NIG adds flexibility in skew zones.

• Open-source: github.com/d-saduakhas/Argo-SPDE
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