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> Determine the joint distribution of return periods over

. . e > We introduce a model that can simulate extreme precipitation
various durations within storms

events with realistic duration-frequency dependencies.
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~ Compare observed dependencies with the common design analysis

storm guidelines The results highlight the overestimation of total precipitation

volumes by the common designh storm sampling methods.
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> The model can support improved flood risk assessment by

DeSIgI‘I storms providing more realistic design storms and intensity patterns.

Figure 3: Methodology workflow.

> Design storms mimic extreme precipitation events. They are widely used as
Inputs to hydrodynamic models to develop flood hazard maps or plan flood
mitigation measures.
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Figure 4: Above the diagonal: Scatter plots of the normalised ranks of accumulated precipitation volumes on the 10-min, 30-min, 1-h,
3-h and 6-h duration intervals. The dashed black curves show the limits of the infeasible regions. Below the diagonal: Histograms of
the pairwise Kendall’s Tt rank correlation coefficients based on 10,000 simulations, where the 99% confidence interval bounds are
shown by the dashed yellow lines and the rank correlation of the observations are shown by the vertical blue line. Along the diagonal:
Estimates of the pairwise dependencies, as the sum of Kendall’s t coefficients.
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> A modified version of the micro-
canonical model, commonly used to
disaggregate precipitation volumes
from coarse to finer time steps, can be
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> The pairwise dependencies are asymmetric, with infeasible regions, due to the following constraint:
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Figure 2: Return periods across different durations (top) and hyetographs (bottom) for precipitation volumes across different duration intervals within precipitation events. of intensity-duration. e 120 180 240 300 360
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observed events and 100-y design storms in Zurich (Switzerland).
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