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Machine Learning is gaining increasing attention from the scientific 

community in hydrological and hydraulic research. Data-driven models can 

help address some of the most relevant challenges in flood mapping. 

Despite their advantages, data-driven approaches suffer from poor 

generalization capabilities (i.e., difficulty in predicting new, unseen scenarios). 

Furthermore, their results are often non-physical.

2D Experiment: Catchment Generalizability4Introduction1 1D Experiment: Varied Flows in river3

Methodology2

We propose introducing physical information, relying on user expertise, into 

the training phase of data-driven models in the form of a regularization term 

of the loss function ℒ. The similarity with the PINNs approach is limited to the 

formulation of the modified loss function.

A highly controllable and informative experiment has been carried out for a 

synthetic, 1D hydraulic problem: the reconstruction of a steady-state, one-

dimensional water surface profile in a rectangular channel.

We investigate whether incorporating physics-based training strategies can 

enhance generalization to unseen catchments without resorting to model 

retraining. This task remains a significant challenge for ML-based flood models.

Paralleling challenges often encountered in flood 
mapping applications, we tested the model:

- reducing the training data size

- in extrapolation 

Why PINNs show limited practical uses 
in the river hydraulic context?

• PINNs are designed as Neural 
Solvers for differential problems 
governed by PDEs.

• Every change in the domain requires 
training a new PINN.

• In case of significant epistemic 
uncertainty,  the governing 
equations may not be fully known or 
explicitly available.

Why physics in data-driven models?

• The intersection between physically-
based methods and deep learning 
for modeling complex physics 
systems is a cutting-edge research 
field.

• Research on artificial intelligence is 
moving towards solutions where 
physics is incorporated into the 
machine learning training process.

ℒ = 𝜆 ∙ ℒ𝐷𝐷(𝑦, ො𝑦) + 1 − 𝜆 ∙ ℒ𝑃(𝑥, 𝑦, ො𝑦)

- ℒ𝐷𝐷 is the data-driven error metric (e.g. MSE), 

depending on the true and predicted outputs (𝑦, ො𝑦);

- ℒ𝑃  is a physical loss term employing physical 

principles, laws, and quantities, which are not 

explicitly formulated in the original dataset, and it 

can depend also on the inputs x;

- 𝜆 is a weighting hyperparameter.

The physical loss term ℒ𝑃 enriches the information 

content of the dataset and, in this sense, we can 

note its similarity to data augmentation.

ℒ𝑃 does not necessarily resort to PDEs, making it 

suitable for scenarios with significant epistemic 

uncertainties, such as river hydraulics. The method 

appears highly versatile.

Governing equation:

Specific Energy equation
𝑑𝐸

𝑑𝑥
= 𝑠 − 𝐽

Additional complexity:

Possible presence of a hydraulic jump 

(mixed flow)

DEEP LEARNING ARCHITECTURE: FFNN

Why this kind of assessment ?

It is of great relevance to the 
application of NNs to flood mapping, 
where small datasets are available and 
cases featuring values of the observed 
quantities falling out of the range of 
the recorded series need to be 
predicted.

Water profile reconstruction: inputs and outputs are depicted 

as blue and orange circles, respectively. Three different 

approaches and architectures have been used (see the 

Reference for further details)

The physical training strategies consist in exploiting the local values of the:

- Specific energy (EN)

 ℒ𝑃 =
σ𝑖=1
𝑁 (𝐸(ℎ𝑖)−𝐸(ഥℎ𝑖))

2

𝑁

- Froude number (FR)

ℒ𝑃 =
σ𝑖=1
𝑁 (𝐹𝑟(ℎ𝑖)−𝐹𝑟(ഥℎ𝑖))
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which are used as conveyors of

physical information in the Loss.
Typical outcome of the comparison between the 

employed models (DD, EN, and FR), and the reference 

solution (FD). 

Mean values of two evaluation metrics (NMAE and NNSE) on the test set against the size of the training dataset. Black traces 
and markers represent model’s results on the test dataset fully contained in the range of the training one; red ones regard the 
test dataset containing values out of the range of the training dataset (extrapolation, EX series). Although performance is lower 
for extrapolated scenarios, the beneficial effect of physical information remains evident.

Static Inputs: 

topographic features

Outputs: 
water depth and velocity 

Dynamic input: 

rain intensity

DEEP LEARNING ARCHITECTURE: CNN ENCODER-DECODER
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How is the dataset structured?

Two basins located in the Marche region 
of Italy are considered: the Misa basin is 
used for training and validation, while 
the Cesano basin is used for testing. 
Given the deep learning architecture, 
both topographic features and outputs 
are processed as patches. For the Misa 
basin, four validation zones are selected, 
and overlapping training patches are 
generated around them. In the Cesano 
basin, overlapping patches are also 
extracted for testing.

Training and validation patches are extracted from the Misa basin (left panel), while the 

Cesano basin is divided in test patches (right panel)

Ground-truth flood maps are generated with HEC-RAS simulations for ten 
rainfall intensities, each run until steady-state conditions are reached.
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Regression and classification metrics are used to compare the models (shown 
here using the mean reconstruction method). The right panels display 
predictions and errors for the unseen basin under a single rainfall intensity.

We compare data-driven and physically-trained models using metrics 
averaged over test profiles.

Future developments will include performance evaluation under 
varying geometric differences between training and test basin. 
Additionally, the models will be applied at large scale for rapid 
hydraulic hazard assessment, with a focus in ungauged catchments.
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Data-driven models reduce the computational cost and time 

required by numerical models and can operate without explicit 

physical knowledge of the phenomena. However, while classical 

hydraulic models already face challenges due to the lack of high-

quality and/or sparse measurements, data-driven models are even 

more affected by these limitations.
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