BOKU

Non-stationary low-flow frequency analysis with Mixture Weibull distribution – Copula based framework

EWF Austrian Science Fund

1. Motivation

Accurate low-flow frequency information is crucial for effective water management and minimising the impacts of extreme low flow on ecosystems, the economy, and society, especially during dry periods.

Question: How to extend low-flow frequency analysis for mixed summer or winter regimes to non-stationary regimes??

Data:

- 154 catchments in Austria, Minimum
- annual & seasonal flow (MAM(7-day))
- Period : 1977 -2020

Table 1. Trend test (%)

MAM(7-day)	Summer	Winter	
Trend	24	18	
No trend	76	82	

Table 3. Mixture rate

Catchment (%)	
28	
18	
54	

MAM(7-day)	Summer	Winter
Increasing trend	46	89

Decreasing trend

Table 2. Sen's slope (%)

Table 4. Correlation	on summ	ner and	winter

54

τ	Catchment (%)
Low ($\tau < \pm 0,3$)	36
Moderate	64
$(\pm 0, 3 \le \tau \le \pm 0, 7)$	
High ($\tau > \pm 0,7$)	-

7. References

Coles, S.G. (2001) An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. <u>https://doi.org/10.1007/978-1-4471-3675-0</u> Laaha, G., Laimighofer, J., Ozcelik, N. B., & Fischer, S. (2024). The Role of Process Heterogeneity in Statistical Modeling. https://doi.org/10.22541/essoar.173395745.52004395/v1 Laaha, G. (2023a). A mixed distribution approach for low-flow frequency analysis – Part 1: Concept, performance, and effect of seasonality. Hydrol. Earth Syst. Sci., 27(3), 689-701. https://doi.org/10.5194/hess-27-689-2023

Laaha, G. (2023b). A mixed distribution approach for low-flow frequency analysis – Part 2: Comparative assessment of a mixed probability vs. copula-based dependence framework. *Hydrol. Earth Syst. Sci., 27*(10), 2019-2034. https://doi.org/10.5194/hess-27-2019-2023

Farhana Sweeta Fitriana^{1,}, Svenja Fischer^{1,2}, Gabriele Weigelhofer³, Gregor Laaha¹ ¹BOKU University, Institute of Statistics, ²Wageningen University & Research, Hydrology and Environmental Hydraulics Group ³BOKU University, Institute of Hydrobiology and Water Management

Contact Author : farhana.fitriana@boku.ac.at

