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Aerosol-climate interactions are one of the largest sources of uncertainty in 
future climate projections. The global mean effect of anthropogenic aerosol 
emissions has been a net cooling over the industrial era, but this mean effect is the 
result of spatially heterogeneous forcing that depends on both species and 
emission location. Future reductions and regional redistributions in emissions are 
likely to reduce this net cooling and produce spatially complex trends in 
temperature, precipitation, air quality, and extreme events.

Physics-based Earth System Models (ESMs) can capture these complexities but 
are computationally expensive and often inaccessible to non-expert stakeholders. 

Check out the pre-print on 
ESS open archive!

Surface air temperature response for RAMIP global ssp370-126aer (2045-2064) and DAMIP hist-aer (1995-
2014) aerosol emission perturbations. The left column shows the NorESM target (a,d), the centre shows the 
AeroGP posterior mean prediction (b,e), and the right column shows the difference between the two (c,f). 

AeroGP predicted temperature response for scaled emission perturbations.

Modelling aerosol-climate interactions 
AeroGP performance and testing

26 fully coupled aerosol 
perturbation experiments.

• sulphur dioxide 𝑆𝑂2
• black carbon 𝐵𝐶
• organic carbon 𝑂𝐶

Training Data: NorESM Simulations

Inputs are gridded regional 
emission perturbations and the 
target for emulation is the 
resulting annual mean surface 
temperature change at native 
NorESM spatial resolution (~2˚).

ML method: Gaussian Processes

Gaussian Processes (GPs) are a probabilistic 
supervised learning method in which a model is 
specified by a mean and a covariance function:

f(x) ∼ GP(μ(x), k(x, x′))

In AeroGP we use a combination of anisotropic 
Matérn kernels for the regional response to each 
aerosol species, a linear kernel for the global 
response, and a white noise kernel for internal 
variability.

We account for the spatial correlation of outputs by 
implementing coregionalization:

k(x, x’) = k(x, x′) ⊗ BBT
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Conditioning 
on data

Global mean 
RMSE: 0.09K

Global mean 
RMSE: 0.11K

We validate AeroGP on two 
global perturbation scenarios 
which encompass a range of 
anthropogenic emissions from 
historical industrial levels to 
rapid sustainable reductions. 
AeroGP accurately predicts the 
magnitude and spatial pattern 
of the temperature response 
for both scenarios.

We also test AeroGP on a set of 
scaled regional perturbations 
and find a non-linear response 
depending on the magnitude and 
location of the emissions.

• Increased temporal resolution and smaller emission region definitions 
could improve AeroGP’s internal variability.

• The addition of precipitation and a focus on accurate extremes will 
increase usefulness for policy and scenario evaluation and for assessing 
climate risk.
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Modified from IPCC ARG Ch. 6
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RADIATIVE FORCING AND CLOUD INTERACTIONS 

Modified from IPCC AR6 Ch. 6

fast, low-cost

Physical complexity

Emulators = 
statistical 
surrogates

Full ESM simulations

There is a need for computationally fast aerosol-aware emulators which can be 
used for regional climate risk assessments and policy cost-benefit analysis.
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