Research opportunities for combining climate models with moisture tracking

Ruud van der Ent

Imme Benedict, Victoria Deman, Damián Insua-Costa, Peter Kalverla, Hilde Koning, Gerbrand Koren, Chiel Lokkart, Bart Schilperoort, Arie Staal, Lan Wang-Erlandsson, Chris Weijenborg and Ke Yang

Moisture tracking

Flood event in Belgium, Germany, Luxembourg, Netherlands, summer 2021.

Sources of precipitation on 14 July 2021

Two weeks forward – Two weeks backward

Made with WAM2layers based on ERA5

(Kalverla et al., 2025, GMD)

Moisture tracking intercomparison

Examples

Continental moisture recycling decreases with warming as E_{land} is water-limited

Examples

Different resolution/coupling settings reflected in moisture recycling ratios

Examples

Cropland expansion generally leads to longer atmospheric transport distances

The data problem

- Examples from previous slides are:
 - 'Private' runs, Single models, Daily data
 - Sometimes just 5 pressure levels
- What data is typically used in moisture tracking?
 - -u, v, w wind, humidity,
 - Surface pressure, evaporation, precipitation
 - Subdaily time resolution
 - >20 levels in the atmosphere
- CMIP6: ~5 models meet requirements

Danube case study CMIP6 (MPI-ESM)

- Less summer precipitation in the future
- Less moisture from Mediterranean
- More moisture from the ocean and Northwestern Europe

