Monitoring long-term bottom water temperature changes using fiber-optic sensing in submarine telecommunication cables

Fiber optic sensing: backscattered laser light is sensitive to acoustic (vibrations), mechanical (strain) and thermal disturbances in the fiber

BOTDR records mechanical (strain) and thermal disturbances in the fiber

Roadside field measurements in Saint François (1st baseline Jun 2022)

Monitoring every 6 months of the Saint François - Marie Galante telecom cable \rightarrow +1,5° C in 2 years (2022 to 2024)

Sea Surface Temperature (SST) shallow carbonate platform south of Saint François \rightarrow +1.5° C in 2 years !!

Perfect agreement between BOTDR (Δ T) and SST (within 0.1° C)

Saint François - Marie Galante cable, late Winter seasonal low (March 2025)

March 2025 late Winter thermal low observations Discrepancy between BOTDR (Δ T) and SST (offset by 0.7° C)

Stratification of the water column in late Winter / early Spring?

Future work: begin continuous BOTDR monitoring of telecom cables starting June 2025 (from Orange Caraïbe building - central fiber link station in Saint François)

ERC Proof of Concept project (DeepSCAN) submitted 13 Mar. 2025

Fiber conections to all cables between the islands

Rack where we can install our BOTDR interrogator

Future work: deploy low-cost instruments on the seafloor next to the cable to measure current and temperature

TCM-1 (shallow water tiltmeter)

Specifications

	Range	Accuracy	Resolution
Speed (Low Range w/ Ballast Washer)	0-40 cm/s	2 cm/s + 3% of reading	0.1 cm/s
Speed (High Range w/o Ballast Washer)	0-80 cm/s	3 cm/s + 3% of reading	0.1 cm/s
Direction	0-360°	5° (for speed >5 cm/s)	0.1°
Temperature	-5 to 30 °C	0.1 °C	<0.005 °C
	-20 to -5, 30 to 50°C	0.2 °C	<0.01 °C

Conclusions

- BOTDR monitoring every 6 months (Jun 2022 2024) on Guadeloupe telecom cables (every 3 months from Jun 2024 - Mar 2025) reveals seasonal and long-term temperature variations
- Submarine telecom cables can be used as strain / thermal sensors! Strain/temperature fluctuations can be spatially located and targeted for further studies
- BOTDR indicates a +1.5° C seasonally adjusted temperature increase (from 2022 to 2024) at the seafloor on the shallow shelf (20 - 40 m depth) south of Saint François, (and offshore Marie Galante, and Capesterre)
- SST (Sea Surface Temperature) from satellite observations south of Saint François confirms +1.5° C (from 2022 to 2024)
- Future work: continuous BOTDR monitoring (from Saint François) and deployment of in-situ seafloor temperature and current meters to confirm and calibrate BOTDR observations

Thanks for your attention!

CTD (Conductivity, Temperature, Depth) profiles Dec. 2024

BOTDR statistical analysis of Brillouin frequency shift (expressed as a temperature shift) on the shallow shelf 20 km south of Saint François) (1 MHz = 0.94 ° C)

