

A comparative analysis of physics-based and machine learning methods for sustainable aquifer management in the Emilia-Romagna region (Italy)

EGU25-660

I. Delfini¹, D. Zamrsky², A. Montanari¹

1. Alma Mater Studiorum – University of Bologna, DICAM. Bologna, Italy 2. Department of Physical Geography, Utrecht University. Utrecht, The Netherland

Vienna, 1 May 2025

Objectives

Predict the possible evolution of groundwater conditions in a portion of the Emilia-Romagna region (Italy) under the effects of climate change and human activity.

Compare their performance in simulating historical and future groundwater head values over the same study area.

Assess the resilience of the regional multi-layered aquifer system to long term drought events

Study area and data

- Portion of the Emilia-Romagna region (Italy).
- Simulation period: 2002-2018. This multi-year simulation interval allows the representation of hydrometeorological seasonal variations.
- Extension: 7000 km².
- Spatial resolution: 1 km x 1 km cells, 35 layers of variable thickness.
- Aquifer Groups A (superficial) and B (deep).

Data are mainly available from:

- A. a **Modflow application** to the whole groundwater flow system of **Emilia-Romagna** by **ARPAE** (the Regional Agency for Prevention, Environment and Energy):
 - **geometry** and **hydrogeologic properties** of the aquifers;
 - extraction rates;
- B. freely accessible datasets on the Emilia-Romagna Region and ARPAE repositories:
 - o rainfall at several raingauges
 - water stage in the main rivers.

Numerical model calibration

- Comparison of simulated and observed groundwater head values (2010-2018).
- 127 monitoring wells from the regional monitoring network.
- 2 observations per year

~2260 observations available for calibration

- Parameters adjustments to improve the match between observed and simulated groundwater head values.
- Performance evaluation: R².
- Groundwater budget consistency with

 (i) seasonal variations and (ii)
 groundwater budgets from the regional
 model (Arpae).

Random Forest model setup

- Based on groundwater head observations from the regional monitoring network.
- Simulation of groundwater head anomalies.
- Distinction between shallow and deep wells, considered separately in the calibration process.
- Setup for training and testing datasets:
 - *Training*: data from 2010 to 2015 (~70%);
 - **Testing**: data from 2016 to 2018 (~30%).

TYPE/GROUP	VARIABLES	
Hydrogeology	Vertical and horizontal hydraulic conductivity Specific storage Specific yield	
Topography	DEM	
Water	Vertical and horizontal distance to the nearest water body	
Climatic	Precipitation Average temperature Potential evapotranspiration	
Land cover	Land use coefficient (0-1)	
Coordinates	X utm Y utm	
	Groundwater abstraction	
	Time	

- Hyperparameters:
 - o *ntree*: number of trees to grow in the forest;
 - o *mtry*: number of features randomly sampled at each split;
 - o nodesize: minimum node size.
- Different values of *ntree*, *mtry*, and *nodesize* are tested to assess the combination that provides the **best model** performance.

Scenarios

Goals:

- 1) Estimate the effects of a precipitation reduction;
- 2) Get an insight into the **combined effects** of **variations** in **natural** and **artificial stresses** on the regional aquifer system;
- 3) Compare the groundwater head predictions by the two methods under the same scenario conditions.

Month	Precipitation Rate	
	Reduction (%)	
January	16.3	▼
February	12.4	From statistical
March	17.1	analysis of
April	20.5	droughts in Emilia-
May	11.8	Romagna over the
June	11.4	last two centuries.
July	12.8	
August	23.5	
September	15.1	
October	12.7	
November	14.0	
December	21.0	

Scenarios (2019-203 <mark>0</mark>)	Characteristics
Reference (R)	Time dependent input parameters are constant at the seasonal scale, and equal to their average over the years 2014-2018
1	Monthly average precipitation reduction
2	Monthly average precipitation reduction + Groundwater extraction rates increment (+20%)
3	Monthly average precipitation reduction + Groundwater extraction rates reduction (-20%)

Calibration plots

EGU25-660

Conclusions

The **random forest** algorithm more **accurately** reproduces **historical** groundwater head values than the numerical model.

The **numerical model** and the **random forest** provide **coherent** results, although the random forest is generally more optimistic:

- the regional aquifer system is projected to suffer the consequences of a potential future precipitation reduction;
- an increment in groundwater abstraction may exacerbate the effects of a precipitation reduction, particularly in the southern and south-western regions of the study area;
- a reduction in extraction rates may partially compensate the groundwater head reduction due to precipitation deficit.

Identifying **areas most affected** by **precipitation** and **pumping** changes highlights the importance of considering both **regional** and **local scales** to design climate change **mitigation** and **adaptation** strategies.

The concerning results in the **south-western** part of the study area highlight the need for a **more accurate modeling process** to better assess the consequences of the considered stresses on the aquifer system.

Even though a model refinement could lead to slightly different results, it is likely that **mitigation** and **adaptation strategies** should focus the most in the **south-western** area.

Thank you for your time and attention

Ilaria Delfini

Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM) Alma Mater Studiorum – Università di Bologna ilaria.delfini2@unibo.it

Thank you for your time and attention

Ilaria Delfini

Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM) Alma Mater Studiorum – Università di Bologna ilaria.delfini2@unibo.it