



Karlsruhe Institute of Technology

Secondary phases developed from layered lithium nickel cobalt manganese oxide (NMC) cathode material waste: Environmental mineralogy implications for advancing NMC recycling methodologies

<u>Christoforos Zamparas^{1,2}, Elisabeth Eiche^{1,2}, Jochen Kolb^{1,2}</u>

¹Chair of Geochemistry and Economic Geology, Institute for Applied Geoscience, Karlsruhe Institute of Technology (KIT), Adenaurring 20b, 76131 Karlsruhe, Germany ²Laboratory for Environmental and Raw Material Analysis (LERA), KIT, Adenaurring 20b, 76131 Karlsruhe, Germany

Presenting author contact: christoforos.zamparas@student.kit.edu		ent.kit.edu	Project DiRecReg	Acknowledgements Funding under BMBF–Projekts:03XP0553C
	Favoring metal mobility conditions	Cost-intensive recycling processes	References [1] Myung ST., <i>et al.</i> (2016), Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters 2 (1), 196-223. [2] Bielewski M., <i>et al.</i> (2022), Clean Energy Technology Observatory: Batteries for energy storage in the European Union - 2022 Status Report on Technology Development, Trends, Value Chains and Markets. Publications Office of the European Union, Luxembourg. [3] Vandeuren A., <i>et al.</i> (2023), Environmental bioavailability of arsenic, nickel and chromium in soils impacted by high geogenic and anthropogenic background contents. Science of the Total Environment 902 , 166073.	
	Uncontrolled waste disposal Occupational safety and health Co-oxyanions is expected. This result dispersion, and potentially higher bioard. Implementing recycling methodologies		and complexation of the respective Ni– and s results in relatively rapid environmental er bioavailability [3]. dologies in non–pristine material, where the hydrometallurgical solution chemistry.	

