

# **Strategic Repurposing of Abandoned Cropland** for Aquifer Recharge and Renewable Energy **Boosts Water-Food-Energy Sustainability**

Meilian Li and Xiaogang He **Department of Civil and Environmental Engineering, National University of Singapore** 

### Aquifer

| Motivation                                                                                                                                                                                                     |                                              | <b>1. Ove</b>                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Renewable energy expansion                                                                                                                                                                                     | Water storage expansion                      | Eene                                                                                                                                                                                            |
| Triple renewable power<br>capacity needed by 2030<br>to stay on the 1.5°C<br>pathway (IEA, 2023)<br>Variable Renewable<br>Bergy (VRE): onshore<br>wind & solar PV                                              | <text><text><text></text></text></text>      | <complex-block></complex-block>                                                                                                                                                                 |
| Challenges & Opportunities                                                                                                                                                                                     |                                              |                                                                                                                                                                                                 |
| <ul> <li>Land-use conflicts</li> <li>Multi-objective conflicts</li> </ul>                                                                                                                                      | Integrated planning on<br>abandoned cropland | <ul> <li>Beployable capacienergy (VRE):</li> </ul>                                                                                                                                              |
| Goal<br>Develop an integrated spatial planning<br>framework for MAR and VRE to:<br>• Quantify potential on abandoned<br>cropland<br>• Pinpoint optimal locations for water,<br>energy, and economic objectives |                                              | $capacity_{VRE} = \rho_d$ $Deployable capacity_{density [MW/km^2]}$ $\Rightarrow meteorologic co$ $\bullet Recharge capacity_{recharge (MAR):}$ $Recharge rate [m/d]$ $capacity_{MAR} = \gamma$ |
|                                                                                                                                                                                                                |                                              | • Hydrological col                                                                                                                                                                              |

📧 <u>limeilian@u.nus.edu</u> & 📧 <u>hexg@nus.edu.sg</u>





## Takeaways

Integrated land-use planning tool: A multi-objective spatial optimization framework to repurpose abandoned cropland for solar, wind, and managed aquifer recharge (MAR), jointly supporting energy, water, and economic goals.

 Suitability and potential assessment: Global assessment of siting suitability and estimation of theoretical maximum potential (~ $1.1 \times 10^{4}$  $km^{3}$ /year for MAR, ~440 GW for solar, ~111 GW for wind).

• Main High-resolution spatial analysis: High-resolution (30 arc-second) spatial analysis enables fine-scale mapping and reveals optimal