Unil

UNIL | Université de Lausanne Swiss Geocomputing Centre

¹University of Lausanne, Institute of Earth Surface Dynamics, Faculty of Geosciences and the Environment, Lausanne, Switzerland (marj.tonini@unil.ch) ²Newcastle University, Newcastle upon Tyne, United Kingdom (Jingyan.Yu@newcastle.ac.uk) ³School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom (a.hagen-zanker@surrey.ac.uk)

Introduction

- Urban expansion in Switzerland has blurred the boundaries between rural and urban areas, giving rise to complex peri-urban zones.
- To understand these evolving patterns, we need flexible territorial typologies that go beyond the traditional urban-rural divide.
- Conventional methods rely on fixed thresholds, which often fail to capture regional and temporal variations.
- Machine learning, a key component of GeoAl, provides a powerful alternative by uncovering patterns within complex, multi-dimensional, datadriven relationships.

Swiss geographical regions, by Federal Office for the Environment

Main Objectives

- This study applies an unsupervised learning neural network to classify territorial typologies at the municipal level across Switzerland.
- By integrating physical, demographic, and socioeconomic data, we aim to identify and map rural-urban dynamics, detect patterns of urban expansion, and assess impacts on sensitive alpine regions.

Physical space	Demographic	Socio-economic	
Settlement areas	Natural growth	Employment rate	
Forest areas	Population density	New buildings	
Agricultural areas	International migration	New houses	
Unproductive areas	Internal migration	Individual houses	
Traffic areas	Foreigners	New enterprise	
	Young population	Net income	
	Senior population		

Data source: Federal Statistical Office - Statistical Atlas of Switzerland. https://www.bfs.admin.ch/bfs/en/home/statistiken/regionalstatistik/atlanten/statistischer-atlas-schweiz.html. Accessed 12 Dec 2024

Self Organizing Maps (SOM)

- SOM is an unsupervised machine learning technique that helps identify patterns and classify spatial units based on a set of multiple variables.
- SOM operates in a data-driven manner. Similar spatial units are grouped based on inherent patterns in the dataset.
- SOM units can be aggregated into a lower number of main clusters; hierarchical clustering was used to form this final partition.

Exploring Switzerland's rural-urban continuum through unsupervised learning

Marj Tonini¹, Jingyan Yu², and Alex Hagen-Zanker³

Census Data

teen variables selected from census 2020 at the icipality level.

se variables gives a well-rounded representation of key categories:

ysical space: settlement, forest, agricultural, unproductive, and affic areas.

emographic profile: natural growth, population density, ternational and internal migration, foreigners, young and senior opulation.

cio-economic characteristics: employment rate, new buildings, ew houses, individual houses, new enterprise, and net income.

ltems	Variable 1	Variable 2	 Variable m
X _{1,1}	X _{1,2}	X _{1,2}	 X _{1,m}
X _{2,1}	X _{2,2}	X _{2,2}	 X _{2,m}
X _{3,1}	X _{3,2}	X _{3,2}	 X _{3,m}
X _{4,1}	X _{4,2}	X _{4,2}	 X _{4,m}
X _{n,1}	X _{n,2}	X _{n,2}	 X _{n,m}

o Tonini M, Yu J, Hagen-Zanker - An Unsupervised Learning Approach to the Rural-Urban Continuum. Journal of Geovisualization and Spatial Analysis. Accepted (April 2025)

Results: territorial typologies

• At the end of the data-driven clustering process, municipalities that share similar geodemographic, socio-economic, and land use characteristics were grouped into the same main cluster representing the territorial typologies in Switzerland, derived from the 2020 census data.

• Six distinct clusters were identified, revealing nuanced rural-urban configurations.

 The machine learning approach proved effective for analyzing urbanization and sustainability challenges, especially in ecologically vulnerable Alpine areas.

> Spatial organization of territorial typologies at the municipality level across the rural-urban continuum in Switzerland

Territorial typologies	Cluster #	Number of municipalities	Total covered area (Km2)
Urban centres	Cluster 5	271 (12.2%)	2,090 (5.2%)
Suburban areas	Cluster 2	625 (28.1%)	8,956 (22.3%)
Peri-urban: aging rural	Cluster 3	288 (13.0%)	4,027 (10.0%)
Peri-urban: rural-urban edge	Cluster 4	293 (13.2%)	3,733 (9.3%)
Rural-Forest	Cluster 1	579 (26.1%)	7,786 (19.4%)
Unproductive	Cluster 6	166 (7.4%)	13,605 (33.8%)

Key insights

Boxplots of the distribution of variables related to the physical space (a), demographic (b), and socio-economic variables (c) within each cluster, expressed as scaled values in the range [0-1].

• Complex rural-urban interface, ranging from the Central Plateau around main urban centres (Geneva, Lausanne, Zurich, Lucerne, Fribourg) into the rural areas in the Northen, Eastern and Central Alpine regions. Key trends include agricultural land loss, urban sprawl,

and aging populations in peri-urban/rural areas.

[•] Kohonen T (2000) Self-organizing maps, 3rd ed. Springer, Berlin