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Magnetohydrodynamic (MHD) turbulence refers to the complex interactions between magnetic S 0.0 ®  oscovk VN
fields and plasma flows, resulting in chaotic and dynamic behavior. In this context, IP shocks are y X ¢
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1 2 9 The Taylor hypothesis was used to convert the horizontal axis from time to spatial represented in orange and the ACE data in blue in upstream and

shock normal and upstream and downstream wavevector k; lag. The figures show autocorrelation functions (ACFs) for Wind, DSCOVR, and peak as the most relevant, as the 5, ciream regions.
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In our work, we apply the Taylor hypothesis, which states that temporal changes measured by the R ;5(Okm)1000 i regions of interplanetary (IP) shocks, as observed through multi-spacecraft data analysis.
spacecraft reflect spatial plasma structures in the bulk flow. After calculating the ACF, we determine €25 — Upstream €15 — downstream — » Ratio of A, obtained from the correlation function (Tab. 2) and cross-correlation functions (Tab. 4)
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number cannot be directly determined. Therefore, we estimate 5 The Taylor microscale has been estimated by fitting a parabola to the origin of the | ° The ratio between observed and predicted PSD Is consistent with previous findings [4]
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