

Fuel-aware Forest Fire Danger Rating System RISICO: a Comparative Study for Italy

<u>Nicolò Perello</u>¹, Andrea Trucchia¹, Giorgio Meschi¹, Farzad Ghasemiazma^{2,1}, Mirko D'Andrea¹, Silvia Degli Esposti¹, Paolo Fiorucci¹, Andrea Gollini³, and Dario Negro³

nicolo.perello@cimafoundation.org

¹CIMA Research Foundation, Wildfire Unit, via A. Magliotto 2, 17100 Savona, Italy (nicolo.perello@cimafoundation.org)
²Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, via All'Opera Pia, 13, Genova, 16145, Italy
³Dipartimento della Protezione Civile, Presidenza del Consiglio dei Ministri, via Vitorchiano, 2, Roma, 00189, Italy

www.cimafoundation.org

Fire danger indices play an essential role in the wildfire risk management cycle, supporting the various phases (mitigation, preparedness, response).

Most of these indices rely solely on weather conditions, **without taking into account fuel**, which instead plays an important role in defining potential wildfire behavior.

 $c_{1}m_{0}$

RISICO

The RISICO indices are produced with **sub-daily resolution** following the temporal resolution of the weather inputs and spatial resolution of the static inputs

 $c_{1}m_{0}$

f in 🖸 🗖 🗸

aggregation

danger

administrative

fire

www.cimafoundation.org

RISICO Model

f X in

www.cimafoundation.org

f in 🖸 🗗 ٧

Use of reanalysis dataset to test the **potential predictability** of the model [*Di Giuseppe et al. 2016*]

EEDD Indox	With	Dynamic inputs				s
FFDR Index	memory	Τ	RH	Ws	Wd	Rain
RISICO (4)	yes					
FWI (6)	yes					
Mark 5	yes					
Nesterov	yes					
Orieux	yes					
Angstrom	no					
Fosberg	no					
HDW	no					
Sharples (2)	no					

CHAPTER Dataset [*Tartaglione et al. 2024*] Downscaling of the ERA5 dataset with WRF

- Spatial resolution: ~2km
- Time resolution: 1 hour
- Time span: 1981-2022

- Output resolution: 1 km
- The hourly indices have been reported to daily resolution following the *75th-percentile average* (RISICO method)

EEDP Inday	With	Dynamic inputs		ts		
FFDR IIIUEX	memory	T	RH	Ws	Wd	Rain
RISICO (4)	yes					
FWI (6)	yes					
Mark 5	yes					
Nesterov	yes					
Orieux	yes					
Angstrom	no					
Fosberg	no					
HDW	no					
Sharples (2)	no					

The models outputs have been analyzed against past wildfire events in Italy from **2007** to **2022**. The dataset comes from ground-retrieved burned areas*, containing **geometries** and **ignition dates**.

The analysis has been also conducted separately for the **Summer Fire Season** (May-October) and the Winter Fire Season (November-April)

*Burned areas are collected by Forestry Corps "Corpo Forestale dello Stato" until 2016 and by "Carabinieri forestali" since 2017. The wildfire data for the regions with special statute and autonomous provinces were collected by the competent regional and provincial authorities.

What is a "fire pixel" (true positive) ?

Fire pixel

a pixel burned for at least 20% (wildfire greater than 20 ha) Fire day

a day in which at least a fire pixel is selected

Pixel removed

a pixel partially burned and/or associated with small wildfires **No-fire pixel (***true negative***)**

a pixel not burned in a fire day

Detection Skills

	AUC			
Index	Tot	S	W	
RISICO - DFMC	0.81	0.82	0.62	
RISICO - ROS	0.84	0.85	0.68	
RISICO - FLI	0.78	0.77	0.77	
RISICO - W	0.64	0.65	0.60	
FWI - FFMC	0.83	0.83	0.68	
FWI - DMC	0.79	0.79	0.56	
FWI - DC	0.76	0.77	0.38	
FWI - BUI	0.79	0.80	0.56	
FWI - ISI	0.84	0.84	0.66	
FWI - FWI	0.82	0.83	0.62	
Mark5 - FFDI	0.78	0.78	0.71	
FFWI	0.78	0.79	0.67	
Sharples - FMI	0.80	0.80	0.65	
Sharples - F	0.81	0.82	0.63	
HDW	0.83	0.84	0.61	
Angstrom	0.80	0.80	0.69	
Orieux - WR	0.80	0.81	0.58	
Nesterov	0.79	0.79	0.60	

www.cimafoundation.org

Danger classification

In order for an index to be used operationally, it should be able to **limit the alerted area** discriminating within the territory

Danger classification

The danger classes were defined based on the **percentiles of the distribution**

The percentile values were established by the operational version of RISICO

Danger classification

Percentage of fire pixels classification Classification of territory during *fire days*

	Area vs. Fire Pixels Classification (H+E)		
Index	Area [%]	Fire [%]	
RISICO - DFMC	2.67	29.89	
RISICO - ROS	1.86	23.23	
RISICO - FLI	1.85	14.19	
RISICO - W	0.97	0.67	
FWI - FFMC	2.62	25.61	
FWI - DMC	2.69	13.15	
FWI - DC	2.13	3.96	
FWI - BUI	2.66	12.90	
FWI - ISI	1.90	25.69	
FWI - FWI	2.68	20.89	
Mark5 - FFDI	2.22	22.62	
FFWI	1.12	14.86	
Sharples - FMI	2.64	25.42	
Sharples - F	1.81	25.58	
HDW	2.60	32.18	
Angstrom	2.63	30.25	
Orieux - WR	2.61	8.29	
Nesterov	2.36	10.35	

www.cimafoundation.org

33.20 25.99

N

4

12.65 20.30

V

SV

f X in @

Conclusions

The RISICO model shows a **good detection** capability with respect to other fire danger indices in literature

RISICO effectively identifies fire danger conditions, enhancing the ability to **discriminate areas** across the territory with respect to other indices

Future RISICO developments:

 transitioning from a static fuel map to <u>seasonal fuel maps</u>, taking into account possible different fire regimes;

 incorporating <u>satellite-based vegetation indices</u> that can provide insights into vegetation conditions.

Conclusions

Definition of accepted standards, procedures and datasets, especially for the analysis of spatialized fire danger indices, with particular attention of operational usability

> We are working for making CHAPTER dataset and analysis results open as *datacubes*

Ambiguity in defining "true positives"

- fire-prone conditions do not always lead to actual fires due to the absence of ignition
- not all the wildfires are the same! considering their magnitude rather than a simple binary classification (fire/no fire) would be more meaningful in assessing fire indices performances from an operational standpoint

What should we consider in assessing a fire danger index with respect to wildfire activity?

References

Di Giuseppe, F., Pappenberger, F., Wetterhall, F., Krzeminski, B., Camia, A., Libertá, A., & San Miguel, J. (2016). The potential predictability of fire danger provided by numerical weather prediction. *Journal of Applied Meteorology and Climatology, 55*, 2469–2491. https://doi.org/10.1175/JAMC-D-15-0297.1

Eastaugh, C. S., Arpaci, A., & Vacik, H. (2012). A cautionary note regarding comparisons of fire danger indices. *Natural Hazards and Earth System Sciences*, *12*, 927–934. <u>https://doi.org/10.5194/nhess-12-927-2012</u>

Perello, N., Trucchia, A., D'Andrea, M., Degli Esposti, S., Fiorucci, P., Gollini, A., & Negro, D. (2025). An adaptable dead fuel moisture model for various fuel types and temporal scales tailored for wildfire danger assessment. *Environmental Modelling & Software, 183*, 106254.

Richardson, E., Trevizani, R., Greenbaum, J. A., Carter, H., Nielsen, M., & Peters, B. (2024). The receiver operating characteristic curve accurately assesses imbalanced datasets. *Patterns*, *5*(6), 100994. https://doi.org/10.1016/j.patter.2024.100994

Tartaglione, N., Parodi, A., Bernini, L., Hachinger, S., & Kranzlmüller, D. (2024). CHAPTER: 3x3 km meteorological data 1981–2022 for Europe: 2D extracted fields [Data set]. *Leibniz Supercomputing Centre (LRZ), Garching b.M., Germany*. <u>https://doi.org/10.25927/0ppk7-znk14</u>

Trucchia, A., D'Andrea, M., Baghino, F., Fiorucci, P., Ferraris, L., Negro, D., Gollini, A., & Severino, M. (2020). PROPAGATOR: An operational cellular-automata based wildfire simulator. *Fire*, *3*(3), 26. <u>https://doi.org/10.3390/fire3030026</u>

Acknowledgements

The authors acknowledge the Italian Civil Protection Department - Presidency of the Council of Ministers, who funded this research through the convention with the CIMA Research Foundation, for the development of knowledge, methodologies, technologies, and training, useful for the implementation of national wildfire systems of monitoring, prevention, and surveillance.

Thank you!

f 🗶 in 🖾 🗗 🗸

www.cimafoundation.org info@cimafoundation.org