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Introduction
Fire danger indices play an essential role in the wildfire risk 
management cycle, supporting the various phases 
(mitigation, preparedness, response).

Most of these indices rely solely on weather conditions, 
without taking into account fuel, which instead plays an 
important role in defining potential wildfire behavior.



The RISICO indices are produced with 
sub-daily resolution following the temporal 
resolution of the weather inputs and spatial 
resolution of the static inputs

Italian implementation:
1 hour, 1 km

Dead Fuel Moisture 
Content (DFMC, %)

Rate of Spread 
(ROS, m/h)

Wind-Topography 
Effect (W, adim)

Fireline Intensity (FLI, 
kW/m)

RISICO integrates fuel 
information into 

indices computation

RISICO



temporal aggregation 
(daily rasters)

spatio-temporal aggregation 
at different administrative 
levels (for fire danger 
bulletins)

Dead Fuel Moisture 
Content (DFMC, %)

Rate of Spread 
(ROS, m/h)

Wind-Topography 
Effect (W, adim)

Fireline Intensity (FLI, 
kW/m)

The ourly RISICO indices are then aggregated 
into daily indices by adopting averages of values 
over different percentiles (50th, 75th, 90th)  to 
highlight persistence of fire danger conditions 

RISICO



Dead Fuel Moisture 
Content

Rain > R0

rain [mm]

temperature [°C]

relative humidity [%]

wind speed [m/s]

Rain phase

No-rain phase

yes

no

The fuel moisture evolve towards the 
Equilibrium Moisture Content, with a 
response time that differentiates 
between drying and wetting processes

drying 
process

wetting 
process

The fuel moisture increases towards a 
saturation value, with rapidity depending 
on rain amount 

saturation level 
[%]

standard response 
time [h]

Rate of Spread

Fireline Intensity

Wind-Topography 
Effect

[Perello et al. 2025]

RISICO Model



Dead Fuel Moisture 
Content

Rate of Spread

Fireline Intensity

Wind-Topography 
Effect

ROS = v0 M W

nominal rate of spread
fuel-specific rate of spread in 
no-wind no-slope condition 
depending

Wind-Topography Effect (W)
computed as the worst-case wind-topography 
combined effect in fire propagation from 
PROPAGATOR [Trucchia et al. 2020]

fuel moisture effect
ROS reduces toward zero for DFMC values 
greater than 40% and while increase v0 for 
very dry conditions (i.e., less than 5%)

RISICO Model



RISICO Model

Dead Fuel Moisture 
Content

Rate of Spread

Fireline Intensity

Wind-Topography 
Effect

The moisture content of dead fuel corresponds to the 
Dead Fuel Moisture Content index, while for live is 
considered fixed as worst case scenario and depending on 
fuel types

FLI = (ROS/3600)(lhv0 d0 + lhv1 d1)

Fuel density of dead (i=0) and live 
components (i=1), depending on fuel types

Lower heating value computed based on higher heating 
value (hhv), depending on fuel type, and fuel moisture 
contents for dead (i=0) and live components (i=1)



Vegetation classes
potential fire behavior

Wildfire susceptibility
tendency to experience 

wildfires

grassland & croplands; broadlevaes; 
shrubs; conifers

susceptibility classes
(low, medium, high) 

RISICO Fuel Map

Fuel Map

grassland (G) broadleaves (B) shrubs (S) conifers (C)
low susc. G1: low intensity 

surface fire, low 
likelihood

B1: medium intensity 
forest fire, low 
likelihood

S1: high intensity 
bushfire, low 
likelihood

C1: high intensity 
forest fire, low 
likelihood

medium
susc.

G2: low intensity 
surface fires, 
medium likelihood

B2: medium intensity 
forest fire, medium 
likelihood

S2:high intensity 
bushfire, medium 
likelihood

C2: high intensity 
forest fire, medium 
likelihood

high susc. G3: low intensity 
surface fire, high 
likelihood

B3: medium intensity 
forest fire, high 
likelihood

S3: high intensity 
bushfire, high 
likelihood

C3: high intensity 
forest fire, high 
likelihood



Wildfire susceptibility
tendency to experience 

wildfires

susceptibility classes
(low, medium, high) 

RISICO Fuel Map

Pan-European 
Wildfire 

Susceptibility model

Predisposing factors
Elevation
Slope
North and South direction (aspect)
Vegetation type
Tree cover density
Neighbor vegetation
Annual average temperature (43-years mean)
Annual average max daily temperature (43-years mean)
Annual cumulative precipitation (43-years mean)
Annual average wind speed (43-years mean)
Annual maximum consecutive dry days (43-years mean)
Annual maximum consecutive wet days 
Annual relative  humidity (43-years mean)
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Random 
Forest 

Classifier

EFFIS burned areas 
database (2008-2022) 
at Pan-European level

susceptibility classes based on 
national percentiles (25th, 75th)

Susceptibility Model 

Fuel Map

Vegetation classes
potential fire behavior

grassland & croplands; broadlevaes; 
shrubs; conifers



The classes with high 
susceptibility are limited in 
extension (~25% of the territory) 
but are heavily affected by 
wildfires.
They represent the areas where 
attention is needed

RISICO Fuel Map

Analysis on Italian wildfires 2007-2022

RISICO
fuel
models

100 m Italian fuel map



FFDR Index With 
memory

Dynamic inputs
T RH Ws Wd Rain

RISICO (4) yes
FWI (6) yes
Mark 5 yes

Nesterov yes
Orieux yes

Angstrom no
Fosberg no

HDW no
Sharples (2) no

Comparative Analysis

Use of reanalysis dataset to test the potential 
predictability of the model [Di Giuseppe et al. 2016]

CHAPTER Dataset [Tartaglione et al. 2024]
Downscaling of the ERA5 dataset with WRF 

- Spatial resolution: ~2km
- Time resolution: 1 hour
- Time span: 1981-2022

● Output resolution: 1 km
● The hourly indices have been reported to daily 

resolution following the 75th-percentile average 
(RISICO method)

https://rdm.lab.lrz.de/records/0ppk7-znk14


FFDR Index With 
memory

Dynamic inputs
T RH Ws Wd Rain

RISICO (4) yes
FWI (6) yes
Mark 5 yes

Nesterov yes
Orieux yes

Angstrom no
Fosberg no

HDW no
Sharples (2) no

The models outputs have been analyzed against past wildfire 
events in Italy from 2007 to 2022. The dataset comes from 
ground-retrieved burned areas*, containing geometries and 
ignition dates.

The analysis has been also 
conducted separately for the 
Summer Fire Season 
(May-October) and the Winter 
Fire Season (November-April)

Comparative Analysis

*Burned areas are collected by Forestry Corps “Corpo Forestale dello Stato” until 2016 and by 
“Carabinieri forestali” since 2017. The wildfire data for the regions with special statute and 
autonomous provinces were collected by the competent regional and provincial authorities.



Fire pixel
a pixel burned for at least 20% (wildfire greater than 20 ha)

Fire day
a day in which at least a fire pixel is selected

Pixel removed
a pixel partially burned and/or associated with small wildfires

No-fire pixel (true negative)
a pixel not burned in a fire day

What is a “fire pixel” (true positive) ?

Comparative Analysis



Discrimination 
skills

Detection
skills

Danger 
classification

Fire pixels ranking with respect to total 
distribution
Rank-Percentile Method [Eastaugh et al. 2012]

Fire pixels against false alarms
ROC curves [Richardson et al. 2024]

Alerted area vs. fire classification
Frequency matrices

Cautionary Note: all the comparative methods adopted 
have to consider that the different distributions and 
ranges of the indices, requiring distribution-independent 
measures for comparison [Eastaugh et al. 2012]

Comparative Analysis



AUC

Index Tot S W
RISICO - DFMC 0.81 0.82 0.62

RISICO - ROS 0.84 0.85 0.68

RISICO - FLI 0.78 0.77 0.77

RISICO - W 0.64 0.65 0.60

FWI - FFMC 0.83 0.83 0.68

FWI - DMC 0.79 0.79 0.56

FWI - DC 0.76 0.77 0.38

FWI - BUI 0.79 0.80 0.56

FWI - ISI 0.84 0.84 0.66

FWI - FWI 0.82 0.83 0.62

Mark5 - FFDI 0.78 0.78 0.71

FFWI 0.78 0.79 0.67

Sharples - FMI 0.80 0.80 0.65

Sharples - F 0.81 0.82 0.63

HDW 0.83 0.84 0.61

Angstrom 0.80 0.80 0.69

Orieux - WR 0.80 0.81 0.58

Nesterov 0.79 0.79 0.60

Detection Skills

RISICO indices

Tot Summer Winter

Benchmarks

Comparative Analysis



In order for an index to be used operationally, it should be able to 
limit the alerted area discriminating within the territory

RISICO - ROS index 
(2021-07-23)

Wildfire events 
(2021-07-23)

~12 500 ha

Comparative Analysis
Danger classification



RISICO - ROS index 
(2021-07-23)

Comparative Analysis
Danger classification

P25 P50 P75 P95 P99 P99.9

High
Extreme

Medium-High
Medium
Medium-Low
Low
Very-Low

The percentile values were established by the 
operational version of RISICO

The danger classes were defined based on the 
percentiles of the distribution



Classification of territory during fire days

Percentage of fire pixels classification
vs

Area vs. Fire Pixels 
Classification (H+E)

Index Area [%] Fire [%]
RISICO - DFMC 2.67 29.89
RISICO - ROS 1.86 23.23
RISICO - FLI 1.85 14.19
RISICO - W 0.97 0.67
FWI - FFMC 2.62 25.61
FWI - DMC 2.69 13.15
FWI - DC 2.13 3.96
FWI - BUI 2.66 12.90
FWI - ISI 1.90 25.69

FWI - FWI 2.68 20.89
Mark5 - FFDI 2.22 22.62

FFWI 1.12 14.86
Sharples - FMI 2.64 25.42

Sharples - F 1.81 25.58
HDW 2.60 32.18

Angstrom 2.63 30.25

Orieux - WR 2.61 8.29
Nesterov 2.36 10.35

RISICO indices Benchmarks

Comparative Analysis
Danger classification



The RISICO model shows a good detection capability with respect to 
other fire danger indices in literature

Conclusions

Future RISICO developments:

○ transitioning from a static fuel map to seasonal fuel maps, 
taking into account possible different fire regimes;

○ incorporating satellite-based vegetation indices that can 
provide insights into vegetation conditions.

RISICO effectively identifies fire danger conditions, enhancing the 
ability to discriminate areas across the territory with respect to other 
indices



Ambiguity in defining “true positives”

- fire-prone conditions do not always lead to actual fires due to the absence 
of ignition

- not all the wildfires are the same! considering their magnitude rather than a 
simple binary classification (fire/no fire) would be more meaningful in 
assessing fire indices performances from an operational standpoint

Definition of accepted standards, procedures and 
datasets, especially for the analysis of spatialized fire danger 
indices, with particular attention of operational usability

We are working for making CHAPTER dataset and 
analysis results open as datacubes

What should we consider in assessing a fire danger 
index with respect to wildfire activity?

Conclusions

Challenges in fire danger 
indices assessment
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