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Abstract. Air temperature is a pivotal variable influencing numerous chemical, physical, hydrological and 1 

biological processes, however there is a scarcity of long-term data, especially at high elevations. This study 2 

proposes a statistical methodology to reconstruct daily air temperature time series at a high elevation site, 3 

Jungfraujoch (3571 m a.s.l.) involving observations from 30 MeteoSwiss stations located at lower-altitude 4 

(485-2691 m a.s.l.), with uninterrupted observations within the period 1971-2023.  The reconstructed time 5 

series has been compared with those extracted from two gridded datasets: HISTALP and the one provided 6 

by Imfeld et al. (2023). We found that: i) The selection of stations with temporally consistent long-term 7 

observations is a critical issue; ii) Model performance, efficiency, and errors are primarily influenced by 8 

elevation; iii) The Kling-Gupta Efficiency (KGE) resulted   an appropriate metric to define the ensemble 9 

simulation; iv) Comparable performance with existing datasets, but with greater computational efficiency; 10 

v) The estimated time series may represent  a benchmark for evaluating observational anomalies and for 11 

deeper analysis of Elevation-Dependent Warming issue.  12 
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1. INTRODUCTION 13 

Atmospheric temperature is the measurement of the average kinetic energy of the molecules constituting 14 

the air, it plays a key role in radiative, dynamical, and chemical processes in the atmosphere and is the main 15 

variable of atmospheric sciences. Surface air temperature is conventionally measured at the height of 2 m 16 

above ground (WMO 2023) and is the main driver of many Earth system processes: 1) life cycles and traits’ 17 

evolution (Sheldon and Tewksbury, 2014); 2)the rates of biogeochemical reactions (Smith and Dukes 2013, 18 

Shepherd 2003, Hartley et al 2021, Romeo et al 2015) 3) the hydrological cycle, determining the clouds 19 

formation, the precipitation occurrence and the extent of snow and ice cover (Barnett et al. 2005, Kleidon 20 

and Renner 2013, Beniston et al.2014, Beniston et al. 2018).  21 

The World Meteorological Congress has recognized the vital contribution of long-term weather 22 

observations in preserving our scientific memory and monitoring climate change, given the need for reliable 23 

historical records of the past to understand the present and prepare for the future. Currently, only 246 high-24 

quality time series data of meteorological observations, spanning over decades or even centuries, allow 25 

scientists to study and understand the Earth’s climate, including its variations and trends (WMO 2022). 26 

There is limited availability of long-term, homogeneous and comparable ground-based observations in most 27 

mountainous regions outside Western Europe and North America (Viviroli et al 2011). The Global 28 

Historical Climatology Network dataset (GHCN V.4) includes 27,467 meteorological stations, of which 29 

only 1328 (4.8%) are located above 2000 m asl and 211 (0.8%) are located above 3000 m a.s.l. The density 30 

of meteorological stations declines sharply above 3000 m a.s.l., and the GHCN dataset does not feature a 31 

single station located above 5000 m (Menne et al 2018). The lack of data from high elevations often leads 32 

to the use of data from lowland sites to evaluate processes in high mountain environments, resulting in 33 

uncertainties and poor characterization and modeling of high-elevation environments (Shahgedanova et al. 34 

2021, Lundquist et al 2008). In mountainous environments, scientists have to deal with the inaccessibility 35 

and inhospitality of steep slopes, the complexity, diversity, and spatiotemporal variability of physical 36 

processes (e.g. the complex rugged topography), and the limited financial resources (Thornton, et al.2021).  37 

High elevation temperature can be monitored using remote sensing techniques, particularly through 38 

satellite-derived land surface temperature (LST)., because there is a strong relationship between air and 39 

surface temperature, but the low temporal resolution, the influence of surface emissivity, the presence of 40 

snow and cloud cover and the mismatch between satellites pixels and ground measurements can introduce 41 

uncertainties and biases. (Mo et al. 2025)The focus of the present study is on the calculation of a 42 

temperature time series at the highest meteorological stations of Switzerland. High elevation sites have 43 

many distinctive characteristics compared to the low-elevated one, they occupy about one quarter of the 44 

Earth’s land surface and are home to nearly 20% of the world’s population (Alfthan et al 2018). Mountains 45 

are the storehouse of biological diversity and endangered species, supporting about 25% of the terrestrial 46 

biodiversity and hosting 32% of the protected areas worldwide (Sayre et al. 2020). They provide essential 47 

resources such as water, food, energy and timber to over half of the global population, acting as the 48 

foundation for downstream communities. Mountains act as a major store of freshwater (Barnett et al., 2005; 49 

Viviroli et al., 2011), much of it currently in solid form (snow and ice). They hold intrinsic spiritual value 50 

due to their aesthetic appeal, recreational opportunities, tourism potential and the cultural heritage of the 51 
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indigenous populations (UNESCO World Heritage List 2024). Despite their unique and pivotal role in 52 

human life and natural cycles, mountains and high elevations are considered a “climatic hotspot”. They 53 

experience greater warming rates than the rest of the globe, and the impacts of this warming are amplified 54 

due to the critical role that these areas play in the global climate system (Palazzi et al. 2019). Mountains 55 

are particularly sensitive to future changes in climate with numerous potential impacts ranging from 56 

decreasing biodiversity (La Sorte & Jetz, 2010), shrinking habitats for many species (Meza-Joya et al 2023, 57 

Loik 2024), mismatches between ecosystem components due to variable range shifts (Zu et al., 2021), 58 

declining snowpacks (Blau et al. 2024,carrer et al 2023 ), and retreating glaciers (Huss 2024, Pelto 2020, 59 

Hugonnet et al 2021, Huss & Hock, 2018; Zemp et al., 2019). The decline of the cryosphere has many 60 

consequences, including the potential loss of water supply for billions of people in downstream regions 61 

worldwide (Bradley et al., 2006; Viviroli et al., 2020) and the shifting of snowmelt from spring/summer to 62 

earlier in the year (Musselman et al., 2017). In regions where annual mean temperatures are presently close 63 

to the melting point, small shifts in temperature often have large hydrological consequences (Haeberli & 64 

Weingartner, 2020, IPCC 2019).  65 

Within the Swiss territory, due to the high quality of the meteorological station network (characterized by 66 

high spatial resolution and standardized, homogenized daily temperature time series) many studies have 67 

aimed to create a gridded dataset covering the whole territory. MeteoSwiss has provided a dataset for the 68 

period 1961-2020 (MeteoSwiss Spatial Climate Analyses, 2021), and Isotta et al 2019 published a long‐69 

term consistent monthly temperature grid data set over the past 150 years. Pfister et al. (2020) provided a 70 

continuous spatial weather reconstruction for daily precipitation and temperature since 1864 (grid space of 71 

2.2 km), using an analogue resampling method (ARM) based on station data and a weather type 72 

classification. An ensemble Kalman fitting approach and a quantile mapping were then applied in post 73 

processing (https://doi.pangaea.de/10.1594/PANGAEA.907579). This dataset was then extended by Imfeld 74 

et al. (2023), resulting in a 258-year daily temperature and precipitation dataset for Switzerland from 1763 75 

to 2020 with a grid resolution of 1 km (Imfeld et al. 2023). In the broader Alpine region, spanning from 4° 76 

to 19°E and from 43° to 46°N, mean monthly temperatures (for different topographic heights) on a regular 77 

grid of 5 min grid-distance were estimated by Chimani et al. (2013). The gridded data is currently available 78 

at: https://www.zamg.ac.at/histalp, covering the period 1780-2014, obtained by merging high resolution 79 

climate mean grids (1961-1990) for each month and long term monthly station data. These two gridded 80 

databases will be used as a comparison to validate our long-term time series reconstruction. 81 

This study focuses on reconstructing daily maximum, mean and minimum temperature time series from 82 

1900 at the Jungfraujoch (Switzerland), the highest meteorological station within the Swiss territory and 83 

the reference of the ICOS network about the greenhouse gases monitoring (Cristofanelli et al 2023). Within 84 

the Aletsch UNESCO World Heritage Site, where the cryospheric components are pivotal factors for many 85 

environmental and biological processes, the peculiarity of its location makes the reconstruction of the daily 86 

temperature a reference for a backward simulation. 87 

Key aspects of this work are: i) Define a low-data requirement method to reconstruct daily temperature at 88 

high elevation sites which can be easily extended at many other inaccessible sites over the world; ii) 89 

Estimate an historical time series which is temporally  reliable; iii) The elevation dependent warming is an 90 

https://doi.pangaea.de/10.1594/PANGAEA.907579
https://www.zamg.ac.at/histalp,%20for%20the%20period%201780-2014
https://www.zamg.ac.at/histalp,%20for%20the%20period%201780-2014
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open issue and the evolution of the climate change remains unknown, that’s why is necessary to remove 91 

trends and estimating the model’s parameters on stationary dataset; ; iv) Evaluate the model performances 92 

in terms of correlation biases, autocorrelation and efficiency to select the right stations which provide 93 

reliable estimation at the target site; v) To ensure the quality of the estimated time series also in the period 94 

1900-1933, a final comparison with Histalp and Imfeld gridded datasets will be presented, demonstrating 95 

comparable performances;vi) the reconstruction of the daily temperature from 1/1/1900 allows the 96 

comparison with others 7 uninterrupted  time series measured at elevation above 1000 m 97 

In the next, data descriptions and preliminary analysis are given in Section 2, Methods in Section 3, Results 98 

in Section 4, Discussion and Conclusions in Section 5. 99 

2. DATA DESCRIPTION AND PRELIMINARY ANALYSIS 100 

The Jungfraujoch is a High-Altitude Research Station (HFSJ) located in the saddle between the Jungfrau 101 

and Monch peaks in the Bernese Alps, on the boundary between the cantons of Valais and Bern, at the 102 

meteorological divide between North and South, at an altitude of 3500 m a.s.l. This site is considered as a 103 

mailstone for monitoring meteorological variables using standardised automatic sensors from 1980 and also 104 

provides unique visual weather observations of cloud type and height as well as precipitation  thanks to the 105 

permanent presence of researchers. The shortwave solar radiation and long-wave thermal infrared are 106 

measured to study the effect of greenhouse gases on the infrared radiation emitted by the atmosphere to the 107 

ground and in the context of the ozone depletion problem. The Jungfraujoch is one of the stations in the 108 

National Air Pollution Monitoring Network (NABEL) operated by Empa and the Federal Office for the 109 

Environment (FOEN) and it is the highest measurement station within the ICOS network (https://www.icos-110 

cp.eu), measuring carbon monoxide and dioxide, methane, nitrous oxide (Cristofanelli et al. 2023). Its 111 

altitude, its distance from any sources of pollutants and its very dry alpine air makes the Jungfraujoch 112 

especially suited for monitoring the column integrated gases concentrations (vertical profile) and the 113 

aerosols. The fine suspended particles, depending on their physical and chemical properties, change the 114 

characteristics of the clouds and affect the formation of ice in high altitude cirrus clouds (CLACE 115 

experiment). Secondary cosmic rays and radioactivity are monitored by two standardized neutron monitors 116 

to determine the primary cosmic ray flux and it energy spectrum (RADAIR network).It is well suited for 117 

long-term ground-based monitoring of the free troposphere because it is permanently manned and 118 

undisturbed measurements started in 1937 (Appenzeller et al 2008). It became automated in 1980. The 119 

MeteoSwiss database provides the daily maximum, minimum and mean temperature observations for the 120 

period 1961 to 2023 (from 1933 for the mean). Within this database, we selected daily temperature 121 

observations of the mean and extremes observed at 30 meteorological stations, sorting them according to 122 

the elevation and with uninterrupted measurements at least from the year 1971. In the following sections, 123 

the Jungfraujoch (JUN) will be named as the Target Site (TS) and the other 30 considered stations as the 124 

“back-up” stations (BS). MeteoSwiss provides a reliable and verified dataset, where every published value 125 

is accompanied with quality and mutation parameters flag, which describe suspected, missed or inconsistent 126 

data. For each station, Table S1 shows name, Latitude, Longitude, Elevation, Exposition, Distance from 127 

the target site; frequency distribution with the elevation, along with a geographic plot showing the 128 

http://www.bafu.admin.ch/luft/00612/00625/index.html?lang=en
https://www.empa.ch/web/s503/nabel
https://www.bafu.admin.ch/bafu/en/home.html
https://www.icos-cp.eu/
https://www.icos-cp.eu/
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respective location (Figure 1). 42% of these stations are below 1000 m a.s.l., 42% in the range from 1000 129 

m to 2000 m a.s.l., while 16% are above 2000 m a.s.l. (Figure S3 a). 18 of 31 stations are inserted in the 130 

Swiss Basic Climatological Network (Swiss NBCN), where systematic measurements of climate 131 

parameters have been conducted since 1864. To increase the numbers of stations above 2700 m a.s.l., we 132 

included also: i) the Zugspitze monitoring observatory (DLZUG), part of the Germany National 133 

Meteorological Service (DWD) operational network, located at 2962 m a.s.l. on the Germany/Austrian 134 

border, 247 km from the Jungfraujoch site; ii) The Sonnblick observatory (SON), in the middle of the 135 

Eastern Austrian Alps and part of the Austrian national meteorological service (ZAMG) operational 136 

network, above an isolated peak at 3105 m a.s.l., 382 km from our target site.  137 

The 30 MeteoSwiss “BS” stations are reported with light blue dots in Figure 1 along with the three other 138 

aforementioned historical observatory: Jungfraujoch (JUN, Red triangle), Sonnblick (SON, blue triangle), 139 

Zugspitze (DLZUG, green triangle). As one of the main purposes of this work is to provide a long-term 140 

daily consistent and reliable mean daily temperature at the target site, which started its observations in 1933, 141 

we turned to the HISTALP gridded dataset for monthly temperature data, which covers the period from 142 

1780 to 2014 (Auer et al. 2007, Chimani et al. 2013 https://www.zamg.ac.at/histalp/datasets.php). Within 143 

this dataset, we selected the closest grid point to the JUN peak and we compared the mean monthly 144 

temperature time series with the observations (mean monthly values in the period 1933-2014), finding a 145 

bias of -2.05°C, likely due to the altitudinal gradient. In 2023 Imfeld et al. estimated the daily mean 146 

temperature time series for Switzerland on a 1 km grid. This high spatial resolution allowed to select the 147 

closest grid point characterized with a median bias (compared to daily observations at our target site in the 148 

period 1933-2020) equal to -0.13°C. These two historical time series (after bias correction) will be used as 149 

references to compare our estimated time series especially in the in the period 1900-1933 for a further 150 

validation. The comparison of mean annual error bars between the observations and unbiased time series 151 

from the aforementioned datasets (Figure S1) shows good agreement within the period 1940-1980. We 152 

highlight some discrepancies: before the year 1940, in the year 1981 and within the period 2005-2014. 153 

Some of these discrepancies can be related to:  the introduction of automated measurements (1981), change 154 

of instrument type (1982), and instrumental problems (1992 to 1994), which characterized the history of 155 

the target meteorological station (Appenzeller et al. 2008). A positive trend in the mean annual temperature 156 

is also clear after the year 1970, reaching the cumulative value of +2.01°C by the end of 2023 (based on 157 

the cumulative moving average of monthly mean annual trends).  158 

https://www.zamg.ac.at/histalp/datasets.php
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3. METHODS 159 

Working with long-term daily temperature time series observed in mountain regions presents several 160 

challenges, including lack of data, temporal inconsistency (relocation, damage), and varying trends 161 

(sometimes nonlinear nor monotonic with elevation, latitude and longitude). To address these issues, we 162 

propose a methodology articulated in the following five steps (see also Figure S2):  163 

Step 1: Data collection and preliminary analysis. Initially, daily observations of maximum, mean, and 164 

minimum temperatures from each meteorological station were retrieved, considering the entire period of 165 

observation (which is different among the BS stations as reported in the Table S1). We removed daily 166 

observations before a lack of data period greater than 30 days and we treated missed, suspicious and 167 

inconsistent data as “Not a Number” (under the definition by MeteoSwiss), defining a temporally consistent 168 

time series. 169 

Step 2: Trend removal. Focusing on the period 1971-2023, we applied a detrending algorithm based on 170 

singular spectrum analysis (SSA, Elsner & Tsonis, 2013) to estimate and remove the mean monthly annual 171 

temperature trend from each BS record. The application of SSA does not require any a priori assumption 172 

on the trend’s shape (monotonic and linear trend are conventionally used in literature). After this passage, 173 

we performed Mann-Kendall and Cox Stuart statistical tests (with 0.05 significance level) to verify that the 174 

detrended time series were made stationary. The last test concerned the autocorrelation function 175 

stationarity, to exclude the occurrence of oscillatory components within the detrended time series. 176 

(Zhivomirov 2024). For each detrended time series, we calculated the annual values of standard deviation, 177 

asymmetry and kurtosis coefficients, and we applied the Mann-Kendall test, verifying that in most cases, 178 

the stationarity was reached for all three variables (max, mean and min). (In Section “Results”, we will 179 

explain in detail the comparison among the different trends which were found and the results of the Mann 180 

Kendall test on stationarity). The detrending procedure is critical, because the model’s parameters must be 181 

estimated using pairs of stations which are stationary, without the “anthropogenic” warming trend. Within 182 

the observation interval 1971-2023, where we can account on 30 BSs stations with daily consistent 183 

observation of minimum, mean, and maximum temperature, we distinguished three sub-intervals: the 184 

middle period 1988-2005, used as the calibration dataset to construct our model; the remaining intervals 185 

(1971-1987 and 2006-2023) to be used for validation purposes. 186 

Step 3: Temperature estimation at target site. he daily temperature at the target site TS is calculated as 187 

follows: 188 

𝑇𝑇𝑆|𝐵𝑆,𝑚𝑜𝑑(𝑡) = 𝑇𝐵𝑆,𝑜𝑏𝑠(𝑡) + 𝑇𝐿𝑅𝐵𝑆,𝑚(𝑍𝑇𝑆 − 𝑍𝐵𝑆) + 𝜀𝐵𝑆,𝑚(𝑡)                                              (1) 189 

where 𝑇𝑇𝑆|𝐵𝑆,𝑚𝑜𝑑 , is the temperature at TS calculated from the temperature at BS station, 𝑇𝐵𝑆,𝑜𝑏𝑠; 190 

𝑇𝐿𝑅𝐵𝑆,𝑚(𝑍𝑇𝑆 − 𝑍𝐵𝑆) is a deterministic component, the product of the temperature lapse rate 𝑇𝐿𝑅𝐵𝑆,𝑚 and 191 

the elevation difference between TS and BS, (𝑍𝑇𝑆 − 𝑍𝐵𝑆); 𝜀𝐵𝑆,𝑚 is the residual, assumed a random noise. 192 
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The subscript “m” refers to the monthly variability of the parameters which is mandatory to follow the 193 

seasonal evolution of temperature, while the subscript “𝑚𝑜𝑑” means modelled. 194 

The TLR is a key parameter in the atmospheric sciences, because it determines the stability of an air mass 195 

(https://www.rmets.org/metmatters/when-air-stable-or-unstable). This parameter varies from about -196 

0.98°C/100m for dry air (i.e., the dry-air adiabatic lapse rate) to about -0.4°C/100 m (i.e., the saturated 197 

adiabatic lapse rate) (Rolland 2003). However, the process is rarely adiabatic and many factors can 198 

influence its temporal and spatial variability (water vapor, saturation, cloud cover, land cover, wind 199 

conditions, weather pattern). As an overall mean value over the world, the International Civil Aviation 200 

Organization (ICAO) defines an international standard atmosphere with no moisture with a temperature 201 

gradient equal to -6.5°C/km. 202 

Calibration (1987-2005) 203 

For each couple of TS and BS, within the calibration period, the TLR parameter was estimated, defining a 204 

possible range of variability from -1 to +1°C/100 m and calculating the sum of squared errors between 205 

observations and simulations. The optimal value of the TLR is that which minimizes the sum of squared 206 

errors. The difference between the observed time series and the deterministic component defines the 207 

residuals:  208 

𝜀𝐵𝑆,𝑚(𝑡) = 𝑇𝑇𝑆,𝑜𝑏𝑠(𝑡) − 𝑇𝐵𝑆,𝑜𝑏𝑠(𝑡) − 𝑇𝐿𝑅𝐵𝑆,𝑚(𝑍𝑇𝑆 − 𝑍𝐵𝑆)                                             (2) 209 

For each month, with the maximum likelihood method, the parameters of four statistical distributions 210 

(Normal, GEV, Stable, TLocationScale) were estimated. Kolmogorov Smirnov and Anderson Darling tests 211 

at 5% of significance level were applied to confirm or discard each distribution and the comparison among 212 

their lowest values suggested the best distribution. The calibration phase, for each couple BS-TS defines 213 

12 values of the TLR, and depending on the best statistical distribution, from 24 to 48 parameters for the 214 

residual component.  215 

Step 4: Performance evaluation. A particular effort was made to evaluate the model’s performances in 216 

both calibration and validation periods. To this aim a set of indexes were calculated comparing the observed 217 

(obs) and modeled temperatures (mod): to evaluate the correlation, (1) the Pearson correlation coefficient 218 

𝜌𝑃, (2) the Spearman’s rho 𝜌𝑆, (3) the Kendall’s tau 𝜏𝐾; about biases (1) the mean bias b, (2) the root mean 219 

square error RMSE, (3) its normalized error (NRMSE), (4) the Klimt-Gupta efficiency (KGE). In the 220 

Supplementary materials, we provide the formulas to make their sample estimates.  221 

Temperature reconstruction (1971-2023) 222 

 After the calibration phase, which consists of estimating the TLR and statistical distribution parameters of 223 

the residuals, for each meteorological stations, under the hypothesis of temporal invariance of the same 224 

coefficients we estimated the daily values of minimum, mean and maximum temperature within the period 225 

1971-2023 using Eq.(1). The deterministic component will be the product of  𝑇𝐿𝑅𝐵𝑆,𝑚(𝑍𝑇𝑆 − 𝑍𝐵𝑆), and the 226 

residuals are the median of 1000 quantiles randomly extracted from the distribution of monthly residuals 227 

fitted in the calibration phase (Figure S14). We can compare each estimation of the temperature at the target 228 

https://www.rmets.org/metmatters/when-air-stable-or-unstable
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site using separately each lower altitude station (one of the 32) by calculating the performance indexes 229 

(correlation coefficients, KGE and so on), both in calibration and in validation modes. In this way, we 230 

provided 32 different estimations of daily temperature at the target site. 231 

Step 5: Stations selection. We then selected a subsample of the stations (𝑛𝑒𝑛𝑠) based on the KGE 232 

coefficient (greater than 0.9) to define a reliable time series, avoiding dependence on any single station that 233 

might fail or be damaged by harsh mountain conditions. The ensemble simulation was defined as the 234 

weighted mean of the KGE-based selected stations: 235 

𝑇𝑇𝑆,𝐸𝑛𝑠(𝑡) = ∑𝑛𝑒𝑛𝑠
𝑖=1 𝑤𝑖𝑇𝑇𝑆|𝐵𝑆𝑖,𝑚𝑜𝑑(𝑡)                                                              (3) 236 

where 𝑤𝑖  is the normalized weight, properly defined accordingly to the KGE, related to each station: 237 

𝑤𝑖 =
𝐾𝐺𝐸𝑖

∑𝑛𝑒𝑛𝑠
𝑖 𝐾𝐺𝐸𝑖

                                                                                 (4) 238 

where 239 

 240 

𝐾𝐺𝐸𝑖 = 1 − √(1 − 𝜌𝑃)2 + (1 −
𝜇(𝑇𝑇𝑆|𝐵𝑆,𝑚𝑜𝑑)

𝜇(𝑇𝑇𝑆𝑜𝑏𝑠)
)

2

+ (1 −
𝜎(𝑇𝑇𝑆|𝐵𝑆,𝑚𝑜𝑑)

𝜎(𝑇𝑇𝑆𝑜𝑏𝑠)
)

2

                   (5) 241 

The ensemble simulation was then tested against the observations, under the evaluation of the same 242 

performance indexes previously defined (and reported on the Supplementary materials), which allows to 243 

compare the ensemble simulation with the pairwise one. Because we are interested in long-term daily 244 

temperature reconstruction, we did a backward simulation of the mean daily temperature time series which 245 

started in the year 1900.  246 

An additional check to assess the reliability of the calculated ensemble we made a comparison with  two 247 

independent datasets: Histalp and Imfeld et al. (2023). We selected the grid points of the two datasets closest 248 

to our target site and we compared the data with our TS temperature reconstruction. Within the periods 249 

1933-2014 and 1933-2020, we estimated respectively a bias of -2.05°C for the Histalp time series and -250 

0.13°C for the one of Imfeld et al. (2023). We removed these biases to define two temporally consistent 251 

and unbiased time series at the Jungfraujoch, which were then used to validate our ensemble simulation 252 

especially over the period 1900-1933, where observations were not available.  253 

In the next section, the results of each of the previously presented steps will be explained in detail. 254 

  255 
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4. RESULTS  256 

Starting from the analysis of the long-term temperature daily observations at each meteorological stations 257 

we will then proceed to reconstruct the daily temperature time series using the KGE-based weighted mean 258 

from the year 1900. The following subsection will mirror the flow chart phases (Figure S2) explaining in 259 

detail the results of each of them. 260 

4.1 Time series observation analysis 261 

4.1.1 1900-2023 262 

The temporal consistency is a pivotal factor in the context of estimating reliable daily temperature time 263 

series and it is of even greater importance in a complex mountainous terrain such as Switzerland. 264 

The harsh meteorological conditions and the distance from major cities or human settlements are the main 265 

obstacles to the continuity of daily values. Daily temperature observations time series provided by 266 

MeteoSwiss have already been pre-processed and a deep quality check control is a prerequisite before the 267 

publication on the Idaweb platform, so the only two processes we applied to the data are the classification 268 

as “Not a Number” of suspicious values and the removal of the part of the series before a lack of data 269 

greater than 30 days. About the maximum daily temperature at least 5 stations provided observations from 270 

the year 1900, 8 stations provided the minimum, and 15 the mean (see Figure S3 panel a). Within the period 271 

1971-2023, 32 meteorological stations (called BS stations in the following sections), including the historical 272 

observatories of Sonnblick and Zugspitze as well as the Target Site at the Jungfraujoch, provided reliable 273 

daily temperature time series for the mean and extreme temperature values (Figure 1). This is why the 274 

calibration and validation of the models developed to reconstruct daily temperature at TS refer to this time 275 

interval. . First of all, we computed the time series of the first four empirical statistical moments (mean, 276 

standard deviation, coefficient asymmetry and kurtosis), for each year in the period 1900-2023 (Figure 2, 277 

S4, S5). We found a clear increasing trend in mean daily temperatures, especially marked after the year 278 

1970, at all the sites considered. The annual mean and standard deviation are correlated together and 279 

strongly depend on the elevation with lower values which pertain to mountain peaks. The coefficient of 280 

asymmetry shows a generally negative value, with a left skewed statistical distribution typical of European 281 

mountain sites (Gubler et al 2023), where low values determine the heavy left tail. The annual values of the 282 

kurtosis coefficient are almost always lower than 3, which describes a platykurtic distribution. From this 283 

analysis, we can clearly say that the temperature statistical distribution is far from the gaussian distribution, 284 

because of the heavy tails which moves the asymmetry and kurtosis far from the 0 and 3 values respectively. 285 

There is a clear pattern with the elevation: mean, standard deviation, and kurtosis are lower at high elevation 286 

sites, and the opposite behavior characterizes the coefficient of asymmetry (Figure 2).  287 

In a climatological context, it is important to analyze the annual anomalies of the statistical moments to 288 

determine if and how climate change affects the statistical distributions. Considering as reference period 289 

1900-2023, 15 meteorological stations show a clear increasing trend of the annual mean, a periodical 290 

oscillation near the 0 about the annual standard deviation, a positive anomaly of the asymmetry coefficient 291 

after the 1970, and a clear reduction of the kurtosis coefficient from the 1960s (Figure S6). 292 

 293 
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4.1.2 1971-2023 294 

Based on the temporal consistency analysis, we focus on the period 1971-2023 for the model calibration 295 

and validation phase. Because of the recent accelerating increasing trend on the mean daily temperature, 296 

we estimated the non-linear trend on the monthly mean time series for each station using the SSA algorithm 297 

(Chapter 3). The estimated cumulative annual temperature trend among the 33 meteorological stations are 298 

from -0.08°C to +2.4°C, +1.17°C to 2.5°C, and +0.19°C to 3.20°C, respectively for minimum, mean and 299 

maximum temperature. On 26/33 cases the annual daily thermal excursion increased due to the highest 300 

increasing rates of maximum temperatures (Table S2). The annual trend rate seems to be almost linear 301 

hiding the very high monthly variability. We did not find any clear pattern with the elevation, but we 302 

highlight the presence of just 7 values above 2000 m and a cluster of 22 below 1500 m a.s.l., and a more 303 

representative sample at high elevations are required to obtain more reliable results (Figure 3). The 304 

Elevation-Dependent Warming is an open issue and their investigation is on the frontier of the research, 305 

driven by the current greenhouse gases concentrations and their vertical profile (Pepin et al. 2022). 306 

Time series modelling must account for autocorrelation between subsequent values, and the temperature is 307 

worldwide affected by the persistence property. Analyzing the autocorrelation function (50 days of lag) 308 

within the period 1971-2023, we found a clear trend with the stations’ elevations: the lower altitude sites 309 

(light grey lines) are characterized by higher temporal correlation coefficients compared to the higher 310 

elevation ones (black lines and historical observatories) (Figure S8). The autocorrelation is another way to 311 

see the effect of the heatwaves’ phenomena within cities and the cold air pool winter phenomena which 312 

drives the high autocorrelation coefficients, rather than the high exposure of the peaks and crest of the 313 

mountains, which favors the abrupt changing of the meteorological conditions. The negative vertical profile 314 

of the water vapour concentration in the atmosphere and the higher mountain clear sky view decreases the 315 

temporal autocorrelation of the temperature at high elevations. 316 

The anomalies on the annual values of mean, standard deviation, coefficient of asymmetry and kurtosis 317 

were finally analyzed (the anomalies are defined as the difference between the current annual value and the 318 

mean of the period 1971-2023). The four subplots in the Figure S7 show the clear increasing trend rates of 319 

the mean annual anomalies about the mean and extremes temperature and also about the daily thermal 320 

excursion. We highlight that the variability among the 33 sites (30 BS stations plus the three historical 321 

observatories) were higher before the year 1981, when there was a transition between manual and automatic 322 

sensors. The similar behavior among stations is higher in terms of the mean temperature, while the extremes 323 

are generally affected by a higher variability. Despite the large distances and the difference in data source, 324 

the historical observatories of Zugspitze (blue lines) and Sonnblick (green lines) confirmed the same trends, 325 

emphasizing that elevation represents a key driver for temperature anomalies and about the correlation 326 

between long-term temperature time series. The anomaly checking also allows to evaluate the temporal 327 

consistency of the single station time series and to detect some derivatives on the monitoring instruments. 328 

The Jungfraujoch (red lines) anomalies about the maximum temperature and DTR (Daily Temperature 329 

Range: 𝑇𝑀𝑎𝑥 − 𝑇𝑀𝑖𝑛) showed very lower values before the year 1990 compared against the other sites with 330 

the high spike in the year 1981 when the thermometer relocation occurred. Figure S9 shows the anomalies 331 

of the mean, standard deviation, skewness and kurtosis statistical moments: we found a clear positive trend 332 
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about the mean, a slight positive trend on the standard deviation, an almost stationary time serie anomalies 333 

of the asymmetry and more pronounced negative trend on the kurtosis coefficient. 334 

The different trend rates which affect maximum and minimum temperature suggest a need to evaluate the 335 

daily temperature excursion variability with the elevation. The lower panel of Figure S10 shows that there 336 

is a negative trend with the elevation, determined by the higher increase of maximum temperatures 337 

compared to the minimum ones especially at low elevation sites. 338 

4.2 Model’s parameters 339 

After removing the trend for each temperature time series, we focused on the period 1988-2005 to estimate, 340 

for each pairwise BS-TS, the 𝑇𝐿𝑅𝐵𝑆,𝑚 monthly parameter (deterministic component) and the distribution 341 

of residuals (F(𝜀𝐵𝑆,𝑚)). 342 

4.2.1 Temperature Lapse Rate (TLR) 343 

In the next, when we compare TLR monthly values we will refer to its absolute value. 344 

Monthly values of the TLR parameters reflect the temperature seasonality, with a typical “U” shape. The 345 

estimated lower values pertain to winter months and higher ones to the summer season. The median values 346 

(among the 30 BS-TS pairwise) are from -0.43 to -0.59, -0.42 to -0.65, -0.45 to -0.74 (°C/100m) about min, 347 

mean and max temperatures (Table 1 and Figure 4 Panel a).  348 

About the mean temperature, the highest median value was found in June (-0.651) and the lowest in 349 

December (-0.42), and the “U” shape in this case is evident. The max temperature shows the same trend 350 

with the exception of June, where the value is lower compared to May and July (M:-0.744, J:-0.657;J:-351 

0.722). About the min temperature TLR is higher in April (-0.585) and lower in December (-0.427). In this 352 

latter case, we clearly see the effect of the thermal inversion phenomena (stagnation of cold pools air in the 353 

winter months on the valley stations); and the influence of warming created by the high water vapor content 354 

which smooths the excursion between winter and summer months (especially near water bodies). 355 

The persistence of atmospheric stability conditions in summer months determines the higher values of the 356 

TLR of maximum temperature, where the dry air, clear sky and the high solar radiation increase the 357 

elevation gradient. The boxplot interquartile range and whiskers show the higher variability of the 358 

maximum temperature compared to the minimum ones, which are more concentrated near the median 359 

values. Within Figure 4 we plotted with dashed red lines the Mean Environmental Lapse rate 360 

(0.65°C/100m) and the dry adiabatic Lapse Rate of 0.98°C/100m for comparison. 361 

4.2.2 Statistical Distributions of residuals 362 

As we have seen from the analysis of the statistical moments of the observed time series (Figure 2), the 363 

annual distribution of the daily temperature time series is far from the normality, with negative skewed 364 

asymmetric distributions and platykurtic kurtosis coefficients. The fitting of the residuals statistical 365 

distributions suggested the same behavior, because the Generalized Extreme Value distribution is, in 30/36 366 

of the cases, the one having the lower values of KS (Kolmogorov-Smirnov) and AD (Anderson-Darling) 367 

statistics (Figure 4 Panel b). This means that the heavy tails affect the distribution of residuals and that the 368 

normal distribution is never the best one among the four considered. We have to highlight that the 369 

distribution considered here is the mode among the 30 pairwise of BS-TS.  370 
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TLR and distributions of residuals and their parameters, with monthly variability, are fitted in the 371 

calibration period and then preserved to simulate the whole time series in the period 1900-2023. 372 

4.3 Model Performances 373 

The observation period from 1971-2023 common at all of the 30 stations, allowed to define the 1988-2005 374 

as the calibration period, and use the previous and the following periods to validate the models’ 375 

performances. First, we analyzed the pairwise performances which have been obtained with the comparison 376 

between the estimated (see equation 1) and the observed time series at the Jungfraujoch target site. In the 377 

following Figures and Tables, we will report just Cal and Val terms to simplify the visualization: with “Cal” 378 

we will indicate the 1988-2005 period and with “Val” the overall 1971-2023. 379 

Four performance indexes (NRMSE, BIAS, KGE and 𝜌𝑆𝑝) help to quantify the performance variability 380 

among the different stations (30 in Swiss + ZUG and SON), about the min, mean and max temperatures 381 

(Figure 5). To the mean temperature pertain lowest bias values (Cal=0.063°C and Val=0.121°C), lowest 382 

NRMSE (Cal=0.474 and Val=0.470), highest KGE (Cal=0.874 and Val=0.866), highest Spearman's 383 

correlation coefficients (Cal=0.896, Val=0.895) and lowest IQR ranges. We found a negative bias on the 384 

max temperature in the Validation period which is correlated with high temperature anomalies within the 385 

observation in the last 4 years (2020-2023). The comparison between validation and calibration periods 386 

shows the same performance levels. The ensemble simulation performances about the mean temperature in 387 

the calibration/validation periods are 0.286/0.286, 0.077/0.106, 0.949/0.941, 0.963/0.964 respectively for 388 

NRMSE, Median Bias, KGE and 𝜌𝑆𝑃 suggesting that the ensemble’s performances are at the upper bound 389 

of the correlation coefficients and at the lower bound about the errors. Table S3 shows the individual 390 

stations’ performances for all the 3 variables. The pairwise models’ performances were evaluated also in 391 

relation to the stations’ characteristics: distance, elevation, latitude, longitude, aspect. We found that the 392 

elevation plays a pivotal role by increasing the correlation and decreasing the errors among each BS stations 393 

and the target site TS (see the clear trends of NRSME, KGE, 𝜌𝑆𝑃 and 𝜏𝐾 in Figure S11). Just the median 394 

bias values seem to not be affected by the elevation. 395 

The time series estimation must be evaluated also in terms of its autocorrelation structure, especially when 396 

a daily time scale was considered. The results suggest that also in this case the highest altitude station 397 

preserve the same autocorrelation function compared to the low valley ones. The key message here is that 398 

the elevation difference between TS and BS has a reverse proportion with the model performances. The 399 

ensemble simulation performs well also in this context especially when we consider the mean and max 400 

temperatures (Figure S12 Panel a). Because the ensemble was defined as a weighted mean of many stations, 401 

intrinsically, by definition, its autocorrelation increases compared to the original variables. Finally, we 402 

evaluated the annual anomalies (Figure S12 Panel b).  403 

The median annual biases of the ensemble min, mean and max temperature are: 0.32, 0.22, -0.05°C, but we 404 

can see very high spikes in maximum temperature focused on the years: 1981 (+1.90°C), 1991 (+0.89°C), 405 

1995 (+0.96°C), 2022 (-1.11°C). Since high spikes are present in all BS stations, we hypothesize that the 406 

cause lies within the TS observed time series, which was subjected to shift inhomogeneities in the years 407 

1981,82,92,94 as reported in Appenzeller et al. 2008). 408 
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Related to the maximum temperature, we found high negative biases in the last 4 years (2020-2023) with a 409 

maximum value equal to -1.11°C; that is why we think that the ensemble is a good tool to detect the 410 

anomalies and shows the direction future studies must take. 411 

The comparison between the ensemble simulation and the observations’ daily error bar is shown in Figure 412 

6, where panels a and b respectively refer to daily and annual scales. 413 

The ensemble has high KGE coefficient values, always greater than 0.932 both in calibration and validation 414 

periods. Focusing on panel a and validation period we found a slight underestimation of min and mean 415 

temperature in winter and summer months rather than the maximum which are overestimated especially 416 

from June to September. 417 

The annual error bar (panel b) suggests a very good agreement about the mean temperature but a slight 418 

underestimation in the upper bound of the error bar related to the minimum temperature and some 419 

discrepancies in the years 1981, 2005, 2022 about the maximum temperature. 420 

4.4 Long-term time series reconstruction 421 

Here, we will present a comparison between the ensemble simulation and the observation of the daily mean 422 

temperature available from the year 1933 (Table 2). We also compare the annual anomalies with estimates 423 

from the closest grid point of the Histalp gridded dataset for the period 1900–2014 and from the daily 424 

gridded dataset provided by Imfeld et al. (2023) for the period 1900–2020. The latter two datasets were 425 

previously corrected for a constant bias. 426 

Figure 7 illustrates the comparison between the modeled and observed time series both at daily scale (panels 427 

a, b and c), and annual scale (panel d). We found a mean bias of 0.239°C mainly driven by the high 428 

anomalies before the year 1940, and an overall general slight underestimation on the rest of the simulation 429 

period. The Spearman correlation coefficient equal to 0.96 and the KGE greater than 0.93 confirm the high 430 

correlation, and the error bar shows that the mean daily value is reached well, but the boundary of the 431 

standard deviation range of the ensemble simulation is lower than the observed one (due to its definition as 432 

the mean of a number of stations which have residuals which are GEV-distributed). The autocorrelation 433 

structure is preserved but we found an overestimation because of the intrinsic definition of the ensemble 434 

(as the mean of many variables and generally the mean has and high autocorrelation compared to the 435 

original variable). Finally, the annual time series shows an overall good reliability of the model, with some 436 

periods which are affected by high errors (before 1938, in the period 1981-1985). 437 

For further validation (Figure S13), we compared the ensemble simulation with the estimation published 438 

by Imfeld et al in 2023 at daily scale in the period 1900-1971 (we selected this period because we have 439 

already compared the performance with the observations over the period 1971-2023). In this period, we 440 

found a mean bias of 0.121°C but high correlation coefficient (0.956), with a light underestimation in 441 

January and February. Also, in this case the ensemble estimated a slower standard deviation compared to 442 

the Imfeld ones (Table 2). The comparison with this database suggests that the proposed methodology 443 

provides a reliable time series also in a backward analysis.  444 

Finally, in panel d, we compared the annual time series anomalies among our estimation, those estimated 445 

within the Histalp project (cyan lines) and that obtained by Imfeld et al. (2023) (green lines), where dashed 446 

lines are referred to the unbiased time series. The statistics’ anomalies of the ensemble simulation are very 447 
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similar with the estimation published by Imfeld et al. (2023) (Table S4, Figure S13), and better compared 448 

to the Histalp one. The ensemble underestimated the mean annual temperature and the mean bias is equal 449 

to 0.25°C and higher positive anomalies were found in the period 1960-1970 compared to the other two. 450 

Before the year 1940 there was a general underestimation of the observed temperature which may be 451 

attributed to instrumental problems. Highest spikes can be observed in the years: 1963 (+0.92°C), 1981 452 

(+1.06), 2005 (+0.79°C), with the latter two confirmed by Imfeld et al. (2023) and Histalp (Table S4 453 

compares the anomalies statistics’ also with the unbiased time series). 454 

4.5 1900-2023 Anomalies Comparison 455 

The 2024 observed global warming reaches the historic record of + 1.29°C above the 20th-century Earth’s 456 

average land and ocean surface temperature (NOAA’s 2024 annual global climate report), but the climate 457 

change hits each region differently, and the European Alps is considered a climatic hotspot. The 458 

reconstruction of the daily Temperature from 1900 to 1933 previously presented allows to compare the 459 

Jungfraujoch with other 7 historical time series of meteorological stations above 1000 m (Figure 8). 460 

Particularly we focused on annual anomalies (of the first two central statistical moments: the mean and the 461 

standard deviation), which was defined, for each site, as the difference between the annual mean (or the 462 

standard deviation) temperature with the annual mean of the period 1900-2023. To smooth the interannual 463 

variability we calculated the 10 years moving average, finding the same trend for all sites. About the Target 464 

site our estimation pointed out a rising temperature of +1.74°C at 2023, close to +1.87° C and +1.84° C of 465 

Sonnblick and Saentis and with an abrupt steep positive slope after the ‘80. The estimated anomalies fit 466 

well the Sonnblick mean Temperature annual anomalies even if the ensemble simulation doesn't consider 467 

this BS station because its KGE was less than 0.9. particularly the two time series overlap perfectly from 468 

1900-1923, from  1941-1968 and from 1985-2008. This is remarkable because the two historical 469 

observatories are 383 Km far, and this is an ulterior confirmation that the elevation plays a key role in 470 

driving the rise of the temperature. We also highlight a very rapid increase of the mean temperature from 471 

1940 to 1947 and a prolonged cooler-than-average period between 1951 to 1984 consistent for all the sites. 472 

About the standard deviation anomalies we found a very good agreement between ZUG and JUN before 473 

the year 1967 and from 1978-1990 and their values are generally comprised from -0.5 to 0.5 °C. From 1960 474 

to 2020 there is an interesting sinusoidal shape (with an hypothetical period of 20 years) with  positive 475 

peaks in the years: 1967-1984-2009 and negative ones in: 1976 and 1993. The mathematical definition of 476 

mean and standard deviation defines the correlation between them but when we consider the anomalies  this 477 

correlation seems to be lost. The timeseries anomalies comparison among different sites is a good tool to 478 

detect instrumental derivatives or tipping points and their comparison with others meteorological variables 479 

helps to explain which are the possible driving factors. 480 

 481 

5. DISCUSSION AND CONCLUSIONS 482 

This work is motivated by the need to develop a temporally consistent statistical approach, low-data-483 

requirement, for estimating daily temperatures at high elevations, addressing the gap in long-term daily 484 

temperature observations. To this end, we retrieved daily observations of mean and extremes daily 485 
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temperature of the highest meteorological stations with continuous daily observation at least from 1971 486 

from the quality-checked MeteoSwiss database. To increase the number of stations in the range 2600-3500 487 

m a.s.l., we included the historical observatories of Sonnblick (3106 m) and Zugspitze (2904 m).  Then we 488 

selected the highest meteorological station, Jungfraujoch, as target site, because it is a privileged site for 489 

monitoring the atmospheric conditions, greenhouse gases concentrations, air quality and cloud formation. 490 

A preprocessing phase consisted in the analysis of the statistical moments of the 33 daily temperature time 491 

series (max, mean and min) from 1900 to 2023, which highlight the steep increase of the mean annual 492 

temperature during the last 45 years.he trend's analysis shows a clear positive trend of 1.43°C, 1.81°C and 493 

1.86 °C (min, mean, max) about the annual temperature and an increase in the daily thermal excursion equal 494 

to +0.41 °C. Trend rates and DTR are evaluated in relation to the elevation, but only about the latter we 495 

found a negative elevational trend equal to -0.31°C/km. The analysis revealed negative skewness and 496 

platykurtic features in the daily temperature distributions. The anomalies of the other three statistical 497 

moments (σ,β,γ) have a mean value of zero suggesting a more sophisticated variability.  Focusing on the 498 

last 52 years, we removed the temperature trend of the mean monthly temperature of each site and we 499 

selected for model calibration and validation respectively the periods  1988-2005 and 1971-2023. Then we 500 

selected the highest meteorological station, Jungfraujoch, as the target sites and the others 32 as backup 501 

stations. The method of reconstructing the historical daily temperature time series at the target site is the 502 

weighted mean of several low altitude stations selected by a KGE coefficient greater than 0.9. The KGE 503 

coefficient is a commonly used index in hydrology, and here was adopted to evaluate the pairwise model 504 

performance during the calibration period. The pairwise (BS-TS) daily temperature estimations are defined 505 

as the sum of the observed temperature at each low altitude station plus a deterministic and stochastic 506 

component. The first is the product of the TLR and the altitudinal gradient and the second is a random 507 

extraction from the residuals’ statistical distribution (TLR and residuals distribution are fitted comparing 508 

observation and estimation in the calibration period at monthly scale). The pairwise model performances 509 

were evaluated according to biases (mean, RMSE, NRMSE), correlation coefficients of Spearman, Kendall, 510 

Pearson, and the Klimt-Gupta Efficiency. We found comparable performances in both the calibration 511 

(1988-2005) and validation (1971-2023) periods suggesting the temporal invariance of the quality of the 512 

assessments and a clear pattern with the station elevations: higher stations' elevations perform better than 513 

the low altitude ones. This is a warning about the use of low altitude temperature time series in the 514 

estimation of high elevations sites. The former can be affected by very different local phenomena due to 515 

anthropogenic factors such as the heat island, or the cold air pool phenomena strongly decreasing the 516 

temperature correlation even if the two stations are very close together in terms of latitude and longitude. 517 

However, the use of weather stations at low altitudes is necessary since they have the longest observed time 518 

series, and a compromise between the length of the time series and the correlation must be reached. 519 

The choice of using KGE > 0.9 as the criterion for selecting stations in the ensemble is open to discussion, 520 

but we opted for this index because it considers both the correlation and the first two statistical moments. 521 

It should be noted that sorting stations by elevation would yield similar results. The KGE-based weighted 522 

mean used to define the ensemble simulation is a key innovation of this study, offering several advantages: 523 
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i) it removes dependence on a single station observation, ii) it increases the estimations' temporal 524 

consistency and temporal autocorrelation, decreasing the influence of local phenomena; iii) it increases the 525 

reliability of the mean simulated value decreasing anomalies and biases. Comparing the ensemble 526 

simulation with the observations in the period 1971-2023 under the hypothesis of time-invariance of the 527 

TLR and residuals distribution parameters, we obtained good performances both over the calibration and 528 

validation periods, suggesting high correlation and low biases. The investigation of the best statistical 529 

distributions of the residuals is a novelty. We found that these residuals preserved the shape of the 530 

temperature distribution (asymmetric and platykurtic), which led to a fit with the Generalized Extreme 531 

Value (GEV) distribution, in contrast to the Gaussian normal distribution typically used. In addition to the 532 

mean daily temperature, we estimated also the extremes (max and min) because inside the Alpine Region 533 

they can behave differently under the influence of many natural and or anthropogenic factors (exposition 534 

to the solar radiation, atmospheric water vapor content, greenhouse gases concentration, aerosol, clouds) 535 

and they can be affected by differential altitudinal trends. To verify the reliability of this simple method, 536 

we compared the ensemble simulations with estimates from the closest grid point (at our target site) 537 

provided by Imfeld et al. (2023) and the Histalp project. The calculation of the annual mean temperature 538 

anomalies, correlation coefficients and biases confirmed that the ensemble simulations have a comparable 539 

reliability. The low data requirements of the presented methodology allows to extend the daily temperature 540 

long-term reconstruction at high elevations worldwide enhancing the possibility to study phenomena such 541 

as Elevation-Dependent Warming (EDW). 542 

Open issues which need further investigation are: 1) modeling the dependence of higher order statistical 543 

moments (asymmetry and kurtosis) with the elevation, which could improve the performance of the 544 

proposed model  2) The shape of the residuals distribution suggests the need of a skewed statistical 545 

distribution as a skewed normal or a skewed exponential to better define the tails. In our method flow chart 546 

the temperature trend was removed, but if additional variables are measured, these latter can be  introduced 547 

in the model.  548 

The need of historical records of the temperature at high elevations suggest applying this method to other 549 

under-investigated mountain chains like Hymalaya or Andes mainly because they host a huge glacierized 550 

area with deep implication of the water supply of the lowlands populations. 551 

 552 

SUPPORTING INFORMATIONS 553 

Acronyms And Line-Box-Plot Styles Descriptions  554 

In the optic of rendering fluently readable the main text, we're briefly describe the acronyms and figure line 555 

colors settings: 556 

- "TS" is the target site of the Jungfraujoch, which has the identification code of "JUN" and an ID number 557 

of 101. The observed time series is generally plotted with Red Color; 558 
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- "BS" are the 30 lower elevation meteorological stations within Switzerland which have ID numbers from 559 

301-330. Each observed time series have been generally plotted with greyscale color (Higher elevated 560 

stations tend to have darker style); 561 

- "SON" and "DLZUG" are the Sonnblick and Zugspitze historical observatories, with ID number of 201 562 

and 202 with green and blue bold lines colors; 563 

- Within figures and graphs which show the comparison between the modeled and observed time series the 564 

first will be drowned with red color and the second with blue one. 565 

- Minimum, mean and maximum temperature have respectively blue, green and red lines/dots styles;  566 

- Error bar plot represents the mean plus/minus the standard deviation of the variable; 567 

- Within the boxplots: The notch extremes correspond to [q2 – 1.57(q3 – q1)/√𝑛 ] and [q2 + 1.57(q3 – q1)/ 568 

√𝑛], where q2 is the median, q1 and q3 are the 25th and 75th percentiles. The rectangular box is delimited 569 

by q3 and q1; 570 

Additional Figures and Tables 571 

Within the Supplementary Material the readers can find: 572 

- Figures from S1 to S13; 573 

- Tables from S1 to S4; 574 

All of them are cited at appropriate points in the main text of the manuscript, e.g. ‘(as shown in Figure S1)’. 575 
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Tables 778 

TLR [°C/km] 

  Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Min Max 

T Min 
Med -4.43 -4.84 -5.56 -5.85 -5.60 -5.71 -5.44 -5.29 -5.03 -4.72 -4.61 -4.27 -5.85 -4.27 

IQR 0.88 0.74 0.52 0.44 0.57 0.53 0.50 0.76 0.60 0.64 0.75 0.87 0.44 0.88 

T 

Mean 

Med -4.57 -5.12 -5.97 -6.37 -6.47 -6.51 -6.46 -6.30 -5.73 -5.16 -4.66 -4.20 -6.51 -4.20 

IQR 0.83 0.63 0.35 0.42 0.41 0.54 0.68 0.69 0.57 0.70 0.62 0.80 0.35 0.83 

T Max 
Med -4.96 -5.74 -6.66 -7.21 -7.44 -6.57 -7.22 -7.16 -6.38 -6.34 -5.22 -4.46 -7.44 -4.46 

IQR 1.01 0.78 0.73 0.50 0.67 0.61 0.82 0.91 0.80 1.11 0.84 0.98 0.50 1.11 

                

                

Residual's Distribution Function (Mode of BS Stations)    

 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec    

T Min Gev Gev Gev Gev Stable Gev Gev Stable Gev Gev Gev Gev    

T 

Mean 
Gev Gev Gev Gev Stable Tloc Stable Gev Stable Gev Gev Gev 

   

T Max Gev Gev Gev Gev Gev Gev Gev Gev Gev Gev Gev Gev    

 779 

Table 1 Median and interquartile range of the TLR parameter for minimum, mean and maximum temperature and 780 

mode of the residuals’ distribution function within the calibration period 1988-2005. 781 

 782 

Ensemble Performances 

Index Vs Obs 1933-2023 Vs Imfeld (1900-2020) 

Bias [°C] 0.239 0.262 

NRMSE 0.292 0.303 

ρSp 0.963 0.958 

τK 0.832 0.821 

KGE 0.935 0.928 

Table 2. Ensemble Performances in comparison with Daily mean temperature observations in the period 1933-2023 783 

and the estimated time series by Imfeld et al. (2023) within the period 1900-2020. 784 

 785 

  786 
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 787 
Figure 1. Panel Left: Case study Area. Panel Right: Jungfraujoch, Sonnblick and Zugspitze historical meteorological 788 

observatories (Red, Green and Blue triangles) and the 30 meteorological stations provided by MeteoSwiss (light blue 789 

dots). 790 

 791 

Figure 2. Annual Mean, Standard deviation, Skewness and Kurtosis coefficients (from the top to the bottom) of the 792 

observed mean temperature time series about the 30 MeteoSwiss weather stations (grey lines), Zugspitze (blue lines), 793 

Sonnblick (green lines), Jungfraujoch (Red lines). 794 

 795 
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 796 

Figure 3. On the left panels: Annual trend of min, mean, max and (max-min) Temperatures time series within the 1971-797 

2023 period about the 33 meteorological stations. On the right panels: The variability of the cumulative trend at the 798 

year 2023 versus the stations’ elevations. 799 

 800 

 801 
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 802 
Figure 4. Panel a) TLR boxplot monthly comparison for min (blue), mean (green) and max (red), temperature within 803 

the calibration period 1988-2005 for all of the BS meteorological stations (Dashed red lines represent the reference 804 

values of the mean Environmental and Dry Adiabatic Lapse Rates). Panel b) Residuals’ statistical distribution function 805 

(the mode among the 30 pairwise BS-TS) monthly variability in the calibration period. 806 
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 808 

Figure 5. Comparison of the model’s performances (Bias, NRMSE, KGE, Spearman correlation coefficient) between 809 

calibration (green) and validation (blue) periods. The boxplots represent the 32 BS stations, the dots are the Ensemble 810 

simulations. Panels left, central and right refer respectively to Min, Mean and Maximum Temperature. 811 

. 812 

 813 
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  815 

 816 

 817 

Figure 6. Comparison between the ensemble simulation (blue) and observation (red) in both calibration and 818 

validation periods. Panel a: Daily Error bar with KGE coefficients. Panel b: Annual error bar with the subdivision of 819 

calibration and validation periods. 820 

 821 



 

30 

 

 822 
Figure 7. Comparison between Ensemble (blue) and observed (red) Daily Mean Temperature in the period 1933-823 

2023. Panel a) Scatterplot with bias and Spearman correlation coefficients; Panel b) Daily error bar with KGE value; 824 

Panel c) Autocorrelation function (50 days of lag); Panel d) 1933-2023 Annual error bar time series. 825 

 826 
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 827 

Figure 8. Mean (top panel) and standard deviation (bottom panel) anomalies comparison related to the 8 828 

stations located at Elevation greater than 1000 m a.s.l. The lines represent the 10 years moving average 829 

anomalies (where the anomaly is the difference between the yearly value and the mean of the period 830 

1900-2023). Heavy lines represent the 3 historical observatories of Jungfraujoch, Sonnblick and 831 

Zugspitze, thin ones the other 5 Swiss sites.With red dashed line we distinguish the 1900-1933 period 832 

(Ensemble estimation) and 1933-2023 (observation). 833 


