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Fig.5¢ V|suaI|2|ng domlnant KE Adv and KE Gen Modes in fltted generatlon
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Fig.5a KE Adv .(a) and KE Gen (b) for Highest Fig. 5d Top 10 statlstlcally S|gn|f|cant KE Adv (Blue) and KE Gen (Green)
Power Generation month in Europe (Feb, 2021).

modes according to their contribution (descending order).
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Fig.4a KE Adv (a) and KE Gen (b) for Highest
Power Generation month in India (Aug, 2009).
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Fig.3a: KE Adv (a) and KE Gen (b) for

Highest Power Generation month at : . o x x -
Diaz Farm (Oct, 2020). Fig.3d Top 10 statistically significant KE Adv (Blue) and KE Gen (Green)
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Fig.4d Top 10 statistically significant KE Adv (Blue) and KE Gen (Green)
modes according to their contribution (descending order).
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= Top 30 lag-adjusted PCs for KE Adv (X1-X30) and KE Gen (X31-X60) are required to obtain get the best result. (R*=0.88). get the best result. (R2=0.57).
the best result. (R*=0.58). " Avg Optimal lag for most significant modes = 11.6 days. = Avg Optimal lag for most significant modes = 12.3 days.
= Avg Optimal lag for most significant modes = 10.89 days. = There is strong contribution from KE Adv modes (X1,X5 & X2) and some KE Gen modes |= There is strong contribution from KE Adv modes (X1,X6,X3 & X5) and some of the
= There is strong contribution from KE Adv modes (X12,X10,X17 & X9) and some less e.g. X19, X11 & X17. leading KE Gen modes e.g. X11, X15 & X14.
dominant KE Gen modes e.g. X41, X42 & X37. " Most of the peaks of power generation are driven by KE Adv as top KE Adv mode X1  |= Most of the peaks of power generation are driven by KE Adv, while some of the
= Most of the peaks of power generation are driven by KE Adyv. has substantial contribution during Indian Summer Monsoon. leading KE Gen modes contribute to peaks in between.
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* The number of dimensions needed to model power generation varies across scales. At | = What background conditions over open oceanic regions facilitate long-range
country and continental scales, the relationship appears low-dimensional, with around advection of wind energy?
10 modes each for KE generation & KE advection. However at site scale, a higher * How critical are KE generation and long-range advection for wind power variability?
number of modes around 30 each are required to account for power generation. " |s wind power generation sufficiently low-dimensional in the context of large scale
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