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Introduction
Context
Hydrological forecasting is essential across multiple sectors, including hydroelectric power generation, flood prediction
and mitigation, and water resource management. In this field of research, Machine Learning (ML) models represent a
promising alternative to traditional hydrological models and are increasingly adopted due to their superior performance
in various applications[1][2]. This work presents a novel framework for forecasting 14-day inflow volumes to a hydropower
reservoir in a Canadian catchment using deep-learning models trained on meteorological data, including atmospheric
reforecasts, and observed inflows. The framework investigates whether Long Short-Term Memory (LSTM) models can
directly forecast inflow volumes without relying on intermediate daily streamflow predictions, and whether integrating
meteorological reforecast data during training can enhance model performance and forecast quality.

Study area and datasets

Figure 1 - Catchment and hydropower reservoir locations (Quebec, Canada)

Observed meteorological data (ECMWF)
Daily ERA5 data from 1978 to 2023 [3][4]

Ensemble reforecast data (ECMWF)
Daily ensemble reforecasting from 2016 to 2023
(10 members of lead-time 14 days)

Ensemble forecast data (ECMWF)
Daily ensemble forecasting from 2016 to 2023
(50 members of lead-time 14 days)

Streamflow data
Daily streamflow provided by Rio Tinto

Methodology
Three LSTM models were trained using different combinations of meteorological data from the European Centre for
Medium-Range Weather Forecasts (ECMWF), including ERA5 reanalysis data and probabilistic reforecast datasets. Each
model takes 365 days of meteorological inputs—351 days of observed data and 14 days of forecasts—to predict the 14-day
cumulative inflow volume to the reservoir, as illustrated in Figure 3. The first model was trained exclusively with ERA5 data,
the second with a combination of ERA5 and reforecast data, and the third by combining the training datasets of the first
two models. Model calibration was performed using the Modified Kling-Gupta Efficiency (KGE’) as the objective function
and the Adam optimizer during training. The models are then used to generate hydrological forecasts using ECMWF
ensemble meteorological forecasts and assessed with quantitative metrics such as the Continuous Ranked Probability
Score (CRPS) and Average Bin Distance to Uniformity (ABDU).
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Step 1 : Calibration

E5 : Solely ERA5 data
351 days (ERA5) + 14 days (ERA5)

RF : ERA5 and Reforecast data
351 days (ERA5) + 14 days (Reforecast)

E5-RF : Hybrid approach (E5 then RF)

Evaluation :
KGE’
CRPS

Talagrand
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Step 2 : Operationnal forecasting

Ensemble forecast data
351 days (ERA5) + 14 days (Forecast)
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Figure 2 – Calibration of the developed LSTM models and forecasting procedure  

Figure 3 – Implementation of a training (a) and forecasting sample (b) of the LSTM models

Figure 4 – Envelopes of the 14-day inflow volumes ensemble forecasts for the LSJ catchment for all models – E5 (green), RF (orange) and E5-RF (purple) - over the 
entire forecasting period (a), strongest (b) and smallest (c) spring freshet 

Figure 5 – Boxplots of 14-day volume ensemble forecasts CRPS values for the E5 (green),
RF (orange) and E5-RF (purple) models over winter (a), spring (b), summer (c), and fall (d)

Figure 6 – Talagrand diagrams showing the rank (in percentiles) of the 14-day observed 
inflow volumes within the forecast ensembles for E5 (green), RF (orange) and E5-RF (purple)

Accurate but unreliable ensemble forecasts: The forecasts were under-dispersed and/or biased (systematic under or
overestimation) across all seasons, indicating low ensemble reliability.

Challenges in extreme flow prediction: The models exhibited notable difficulties during both the low-flow winter period and
the high-flow spring freshet, particularly in capturing the timing and magnitude of the spring peak. Systematic biases were
observed: winter flows were consistently underestimated, while spring peak flows were either under- or overestimated
depending on the year.

Trade-offs in using reforecast data: Models trained with reforecast data were more accurate and produced sharper
ensembles. However, these models were less reliable, meaning their usefulness depends on the forecasting objectives.

Results indicate that while results vary seasonally, the three LSTM models can directly predict 14-day cumulative inflow volumes with reasonable accuracy, yielding strong performance
metrics. However, no single model consistently outperforms the others. The main takeaways are :
• Figure 4 :

1) The model trained solely on reanalysis data (E5) exhibits greater variability in its predictions, resulting in lower accuracy but higher reliability.
2) Models struggle to predict the extreme inflow volumes of winter and spring, likely due to the limited exposure to such rare events during training.
3) The models struggle to predict spring peak flows, consistently underestimating the largest freshets and overestimating the smallest—except in 2021. The similar inflow forecasts

across years suggest difficulty in capturing the unique hydrometeorological conditions of each freshet.
4) A timing delay between observed and predicted inflow curves—more pronounced for the E5 model—leads to poor freshet simulation. The onset is underestimated, the peak

occurs late, and the recession is overestimated. This delay begins with the freshet rise and persists throughout the year.
• Figure 5 : During winter and spring, the RF model performs best, while E5 struggles—particularly in spring. In contrast, during summer and fall, E5 outperforms the others, while the two

models trained with reforecasts are alternately the least accurate.
• Figure 6 : The models’ ensemble forecasts are either under-dispersed (U-shaped diagrams) or biased (L-shaped diagrams). The E5 model is the most reliable throughout the year,

obtaining the lowest ABDU values across all seasons. Its high forecast variability—as seen through the spread of the prediction envelopes—helps capture the observed inflow volumes.

[1] Kratzert, F., Klotz, D., Brenner, C., Schulz, K., & Herrnegger, M. (2018). Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 6005–6022.
[2] Arsenault, R., Martel, J.-L., Brunet, F., Brissette, F., & Mai, J. (2023). Continuous streamflow prediction in ungauged basins: Long short-term memory neural networks clearly outperform traditional 
hydrological models. Hydrology and Earth System Sciences, 27(1), 139–157. 
[3] Hersbach and al. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. 
[4] Tarek, M., Brissette, F. P., & Arsenault, R. (2020). Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrology and Earth System Sciences, 
24(5), 2527–2544. 


