

- Impact-Based Forecasting Model for Flood Hazard Mitigation in Java, Indonesia
- Dendi Rona Purnama^{1,2}
- Simon F. B. Tett¹
- Ruth Doherty¹
- Ida Pramuwardani²

¹School of GeoSciences, University of Edinburgh. ²Directorate of Public Meteorology, Indonesian Agency for Meteorology Climatology and Geophysics (BMKG).

IMPACT-BASED FORECAST OF RAINFALL HAZARD EAST NUSA TENGGARA PROVINCE

Valid : 12 Januari 2024 Pkl. 07.00 WIB s/d 13 Januari 2024 Pkl. 07.00 WIB

BE AWARE	Update : 12 Januari 2024
Kupang Alor	
Rote Ndao Kota Kupang	and the second second
nota nopang	Marsh Transferrance
	To and the second secon
	are the
	2 3
	TAKE ACTION
	BE PREPARED
	BE AWARE

Impact-based forecasting is a structured advanced method of integrating hazard, exposure, and vulnerability data to identify risk and assist in decision-making, aiming to promote early action (WMO,2015)

IM		
11524	 199	
	-	

ow bridges cannot be cros	sed.
---------------------------	------

Landslides, rockfalls, or soil erosion occur on a moderate scale.

River flow volume increases/floods.

Floodwaters are hazardous and disrupt community activities on a moderate scale.

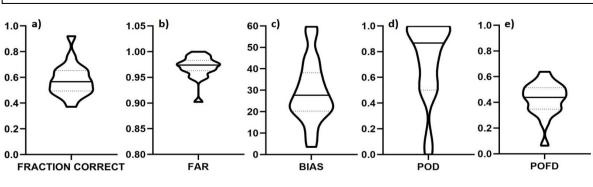
THINGS TO DO

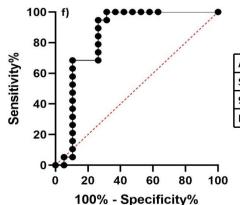
- Be cautious when engaging in outdoor activities.
- Stay updated through mass media and social media.
- Seek information and coordinate with disaster-related authorities.
- Avoid outdoor activities unless absolutely necessary.

https://signature.bmkg.go.id

🙆 🔮 @infobmkg

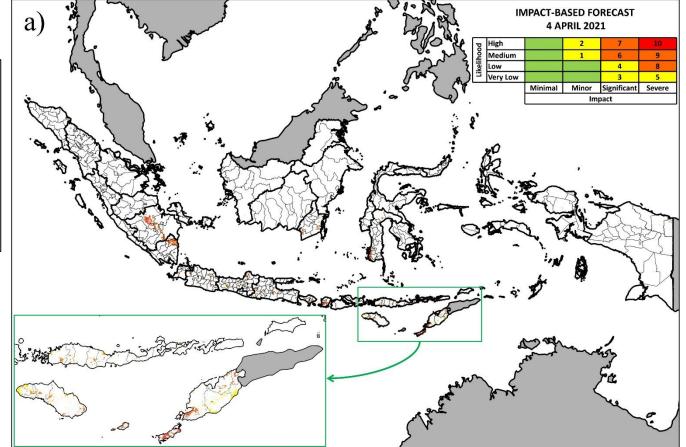
Directorate of Public Meteorology Call Center 196

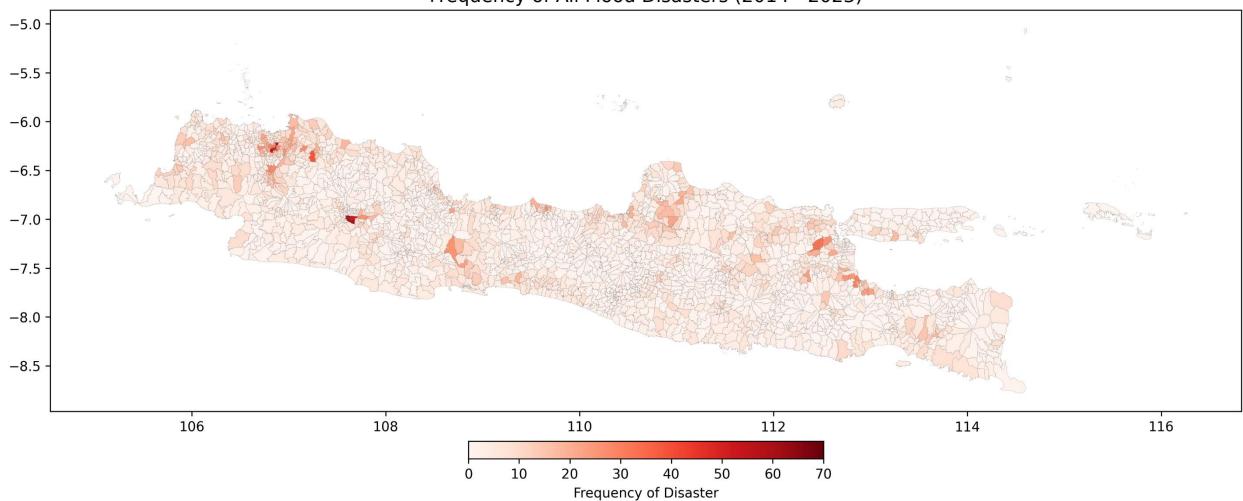

www.bmkg.go.id


Previous Study

https://doi.org/10.1007/978-981-97-0740-9_24

Chapter 24 On the Development of the Impact-Based Forecast Model in Indonesia


Dendi Rona Purnama D, Muhammad Hakiki, Nurul Izzah Fitria, Ayudya Puspita Santi Putri, Ida Pramuwardani, and Achmad Rifani



Area Under Curve (AUC)	0.8449
Standard Error	0.07254
95% Confidence Interval	0.7072 to 0.9870
P-Value	0.0003

Check for updates

	Minimal	Minor	Significant	Severe	Total
Number of disasters	102	52	9	9	172
Predicted	76	34	8	9	127
Unpredicted	26	18	1	0	45
Correctly classified	0	0	5	8	13
Misclassified	102	52	4	1	159

Frequency of All Flood Disasters (2014 - 2023)

Vulnerability & Capacity

The vulnerability and capacity data were directly used from InaRISK by Indonesian National Disaster Management Agency (BNPB)

Type of Vulnerability	Percentage Weight
Social Vulnerability	40%
Physical Vulnerability	25%
Economic Vulnerability	25%
Environmental Vulnerability	10%

			Classification	
Regional Capacity Parameters	Percentage	Low (0 – 0.333)	Medium (0.334 – 0.666)	High (0.667 – 1.000)
Regional Resilience	40%	0-0.40	0.41 - 0.80	0.81 - 1
Community Preparedness	60%	<0.33	0.34 - 0.66	0.67 - 1

			Classification			
Social Vulnerability Parameters	Percentage	Low (0 – 0.333)	Medium (0.334 – 0.666)	High (0.667 – 1.000)		
Population Density	60%	<5 pop/ha	5 - 10 pop/ha	>10 pop/ha		
Vulnerable Group Ratio						
Gender Ratio (10%)		>40	20 - 40	<20		
Vulnerable Age Group Ratio (10%)	— 40%					
Disabled Population Ratio (10%)	40%	<20	20 - 40	>40		
Poor Population Ratio (10%						
Total Population (10%)						
			Classification			
Physical Vulnerability	Percentage	Low	Medium	High		
Parameters		(0 – 0.333)	(0.334 – 0.666)	(0.667 - 1.000)		
Houses Damage Loss	40%	<400 mill	400 – 800 mill	>800 mill		
Public Facilities Damage Loss	30%	<500 mill	500 mill – 1 Bill	>1 Bill		
Crisis Facilities Damage Loss	30%	<500 mill	500 mill – 1 Bill	>1 Bill		
			al 16 1			
Economic Vulnerability	_		Classification			
Parameters	Percentage	Low (0 – 0.333)	Medium (0.334 – 0.666)	High (0.667 – 1.000)		
				(0.007 2.000)		
Gross Regional Domestic Product	40%	<100 mill	100 – 300 mill	>300 mill		
-	40% 60%	<100 mill <50 mill	100 – 300 mill 50 – 200 mill			
Product		<50 mill	50 – 200 mill	>300 mill		
Product	60%	<50 mill	50 – 200 mill sification	>300 mill		
Product Productive Land	60%	<50 mill Class Medium	50 – 200 mill sification High	>300 mill		
Product Productive Land Environmental Vulnerability Parameters	60% Low (0 – 0.333)	<50 mill Class Medium (0.334 – 0.666)	50 – 200 mill sification High (0.667 – 1.000)	>300 mill >200 mill Midpoint (min+(max-min/2))		
Product Productive Land Environmental Vulnerability Parameters Protected Forest Damage	60%	<50 mill Class Medium	50 – 200 mill sification High	>300 mill >200 mill Midpoint		
Product Productive Land Environmental Vulnerability Parameters Protected Forest Damage Natural Forest Damage	60% Low (0 – 0.333) <20 Ha	<50 mill Class Medium (0.334 – 0.666) 20 – 50 Ha	50 – 200 mill sification High (0.667 – 1.000) >50 Ha	>300 mill >200 mill Midpoint (min+(max-min/2)) 35		
Product Productive Land Environmental Vulnerability Parameters Protected Forest Damage	60% Low (0 – 0.333) <20 Ha <25 Ha	<50 mill Class Medium (0.334 – 0.666) 20 – 50 Ha 25 – 75 Ha	50 – 200 mill sification High (0.667 – 1.000) >50 Ha >75 Ha	>300 mill >200 mill Midpoint (min+(max-min/2)) 35 50		

Classifiying Disaster

Date of Event \$	Incident \$	Location \$	Regency ¢	Province ¢	Chronology & Documentation	Reason ¢	Die	Lost ¢	Wounded ¢	Damaged House \$	Submerged House \$	Damaged Public Facilities
2024-11- 17	FLOOD	Ec. Teunom Gp. Rambong Payong Gp. Pasie Timon Gp. Pasie Geulima Gp. Great Gp. Blang Baro District. Pasie Raya Gp. Tuwie Kareung Gp. High Island	ACEH JAYA	ACEH	Documentation	Triggered by high intensity rain accompanied by strong winds which resulted in flooding	0	0	0	0	78	0

The classification of the impact that I have used is derived from The WCSSP WP3 MEIT project: Focus Group Discussion Survey Questions between BMKG (Met Services) – BPBD (Regional DMA) – University College London (in Purnama et al., 2024)

Impacts	Minimal	Minor	Significant	Severe
The number of people affected (e.g. injured, displaced, evacuated)	0 - 999	1.000-50.000	50.001 - 201.000	> 201.000
The number of people dead	0	0	1-27	> 27
The number of neighborhoods (RT) with several houses damaged or de-	<mark>0 - 99 RT</mark>	100 – 350 RT	351 – 999 RT	<mark>> 1.000</mark>
stroyed.				RT
The number of flood sections or bridge closed	<mark>0 - 9</mark>	10 - 25	<mark>26 - 74</mark>	<mark>> 75</mark>
The number of public buildings af- fected (e.g. schools, hospitals, gov- ernment or religious)	0 - 9	10 - 79	80 - 229	> 230

Why Cube Root?

Scale Normalization (Similar to Geometric Mean)

When multiplying three components like H, V, and 1–C, the result can become extremely small or large depending on their values. Taking the cube root brings the value back to a more balanced or representative scale. This is similar to the geometric mean, which for three variables is defined as:

 $GM = (x, y, z)^{1/3}$

Geometric mean is often used when combining factors that interact multiplicatively and may have different scales, so the final result stays within a comparable range to the inputs.

Avoiding Scale Distortion

Without the cube root, the product $H \times V \times (1 - C)$ can be too small (e.g., $0.02 \times 0.3 \times 0.1 = 0.0006$), even if all the components are relatively "high". This can make the impact score unintuitive. The cube root "tames" extreme values and keeps the impact score more proportional and interpretable across regions or time.

Preserving Dimensional Consistency

If the goal is to ensure the final score *I* remains within a [0,1] range, like the inputs, and represents a kind of "weighted average," then using the cube root helps keep the result consistent with that range and interpretable.

Multi-class Cost Matrix

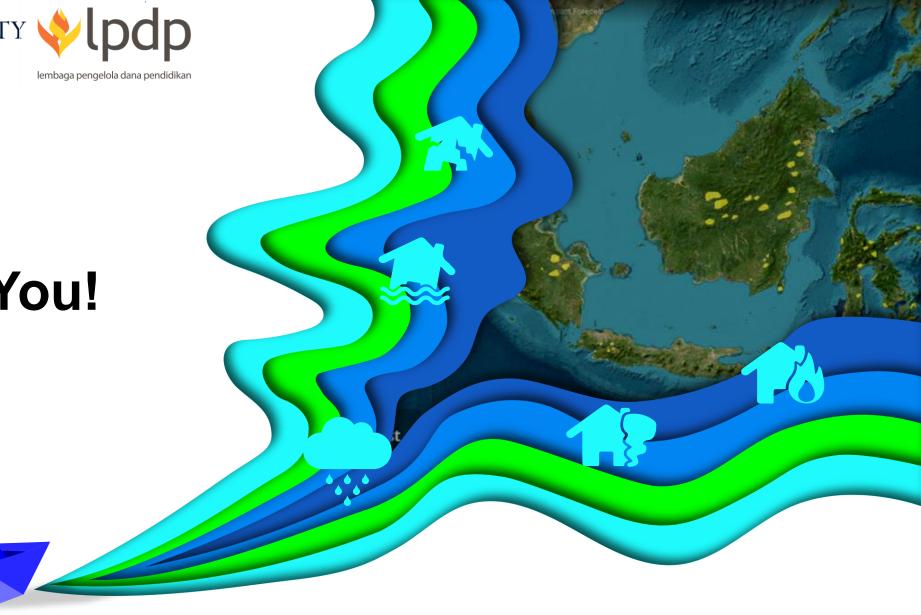
Table 2. The cost matrix for a binary class classification.

		Predicted Class			
		Negative $f(x) = -1$	Positive $f(x) = +1$		
Actual class	Negative $(y = -1)$ Positive $(y = +1)$	$C(-1,-1) = C_{TN}$ $C(-1,+1) = C_{FN}$	$C(+1, -1) = C_{FP}$ $C(+1, +1) = C_{TP}$		

Source: Yoo et al (2024)

Table 12. Misclassification cost matrix on lending club.

			Prediction								
		Α	В	C	D	Е	F	G			
Actual	Α	0	0.0089	0.0166	0.0241	0.0303	0.0365	0.0443			
	В	0.0333	0	0.0073	0.0144	0.0203	0.0262	0.0336			
	С	0.0530	0.0211	0	0.0070	0.0128	0.0184	0.0256			
	D	0.0684	0.0376	0.0172	0	0.0056	0.0112	0.0182			
	Ε	0.0789	0.0489	0.0291	0.0123	0	0.0055	0.0124			
	F	0.0851	0.0568	0.0380	0.0222	0.0106	0	0.0070			
	G	0.0856	0.0608	0.0443	0.0304	0.0202	0.0109	0			


Source: Wang et al (2019)

EXAMPLE

Actual \rightarrow	No Disaster	Minimal	Minor	Significant	Severe
Predict \downarrow					
No Disaster	0	50	100	500	1000
Minimal	10	0	50	250	500
Minor	20	5	0	100	250
Significant	50	20	10	0	100
Severe	100	50	20	10	0

Thank You!

