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Introduction Methodolog .

In this work we focus on the TYrrhenian Deep-sea Experiment (TYDE), carried \ Layer 2: sigmoid Windows
out from December 2000 to May 2001 in the southern Tyrrhenian Sea with 14 /\ gg‘g ‘S‘ (5 days)

Guralp CMG40T OBS/H stations and differential pressure gauges [1]

Although valuable, much of the TYDE data remained underexploited at the time
due to technological limitations.

Our approach uses evolutionary optimization to design an optimal neural
network architecture tailored to this OBS data. The optimized network rapidly
scans large amounts of raw seismic recordings, selecting a smaller set of
candidate windows likely to contain seismic events. With only 61 manually picked
events available for training, we employ PickBlue|z] to accurately pick seismic
phases from these candidates. Finally, a Self-Organizing Map (SOM) clusters the
events, helping to distinguish different types of seismic activity and reduce false
positives.

This integrated method improves detection accuracy, reduces manual workload,
and highlights the potential of reanalyzing legacy datasets like TYDE using
modern machine learning techniques.

Objectives
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Develop an automated system for detecting and classifying seismic
events in noisy OBS data, combining optimized neural networks,
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