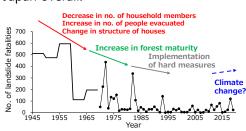

Risk evaluation of rainfall-triggered landslides on multiple scales of Japan

Yoshinori Shinohara (University of Miyazaki)

Contact:

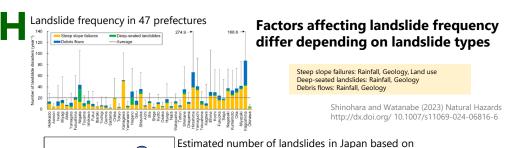

Landslide risk (R) = Hazard (H) \times Exposure (E) \times Vulnerability (V)

Factors reducing landslide fatalities change with time

Japan overall:

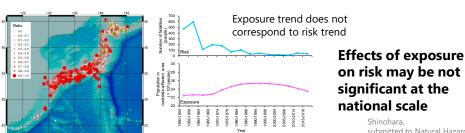
Shinohara and Kume (2022) Science of The Total Environment

http://dx.doi.org/10.1016/j.scitotenv.2022.154392


Arrows: Large contributions on reducing fatalities


Kure City, Hiroshima Prefecture:

Year	Landslide type	$N_{\rm F}$	$N_{\rm L}$	$N_{\rm H}$	$N_{\rm F}/N_{\rm L}$	$N_{\rm F}/N_{\rm H}$	$N_{\rm H}/N_{\rm I}$
1945	Debris flows	949		842		1.127	
	Steep-slope failures	46		44		1.045	
	Total	995	315	886	3.159	1.123	2.813
1967	Debris flows	12		14		0.857	
	Steep-slope failures	69		50		1.38	
	Total	81	1186	64	0.068	1.266	0.054
2018	Debris flows	14					
	Steep-slope failures	0					
	Total	14	517	176	0.027	0.08	0.34


Factors underlying $N_{\rm F}$							
Factors	1945	1967	2018				
Forest growing stocks (106 m3)	38.6	31.9	110.3				
Number of check dams	3	131	187				
Number of household members	4.21	3.47	2.29				
Percent of residential buildings built with non- woody materials (%)	0.3	4.7	32.9				

Shinohara and Shimomura (2025) Natural Hazards http://dx.doi.org/ 10.1007/s11069-024-06816-6

15 scenarios with different rainfall and forest age structure

Population exposed to landslides / Total population

submitted to Natural Hazards

Floor and gender affect the possibility of death in collapsed houses by landslides

Exposure population ratio:

Database for landslide fatalities in collapsed houses Floor, gender, age, landslide type, trigger, time Period: July 2010-July 2024

Scenario of forest age distributions

Exposure population ratio for

all municipalities of Japan

All factors are available: 275 people All factors except floor are available: 621 people

Possibility of death

First floor: 131/183 (72%) Second floor: 18/92 (20%)

Female: 250/321 (78%) Male: 201/300 (67%)