EGU25-7794

1. Introduction

Several analyses have focused on the melting of the Greenland ice sheet due to recent global warming, utilizing snowmelt indices derived from spaceborne microwave brightness temperatures. However, there is a notable lack of studies examining the diurnal variation of these temperatures. This study aims to elucidate the short-term relationship brightness satellite microwave between temperatures and snowmelt during the summer of 2012, a period marked by extensive melting of the Greenland ice sheet, using the JAXA-operated microwave radiometer (GCOM-W/AMSR2).

2. Study site & Method

The study site was selected as the SIGMA-A site in the northwestern part of the Greenland Ice Sheet (Fig.1). The automated weather station (AWS) was installed at this site on June-July 2012. The study period was defined as the melting season from July to August, 2012, coinciding with the commencement of observations by GCOM-W/AMSR2. The melting period was defined as the period when the snow surface temperature reaches 0°C, calculated from the AWS-acquired longwave radiation. During this period, spaceborne microwave brightness temperatures and meteorological data were collected.

<Snow Impurity and Glacial Microbe effects

(Fig.1) (↑)SIGMA-A site located in the northwestern part of the Greenland Ice Sheet (GoogleEarth), (\rightarrow) AWS at SIGMA-A site (Aoki et al., 2014).

Automated Weather Station

Short-term variations of spaceborne microwave brightness temperature on the Greenland ice sheet during the 2012 melting season.

Takumi Suzuki¹, Rigen Shimada¹, Misako Kachi¹, and Tomonori Tanikawa² ¹Japan Aerospace Exploration Agency (JAXA), Earth Observation Research Center (EORC), Tsukuba, Japan (suzuki.takumi@jaxa.jp) ²Japan Meteorological Agency (JMA), Meteorological Research Institute (MRI), Tsukuba, Japan

Water clouds may increase the high-frequency brightness temperature, while the increased moisture content of the snow surface may increase the low-frequency. Spaceborne microwave data may be able to detect large-scale melting that may increase in the future, even at sites where meteorological data are not available.

✓ The melting period on the GrIS can be estimated from the high brightness temperature of the vertically polarized wave observed by the spaceborne microwave radiometer. ✓ Especially during large-scale melting accompanied by rainfall, the polarization ratio of the low-frequency brightness temperature were found to decrease significantly.

	Tb6.9H
<u></u>	Tb7.3H
	Tb10.7H
	Tb18.7H
	Tb23.8H
	Tb36.5H
	Tb89.0H
	Tb6.9V
	Tb6.9V Tb7.3V
	Tb6.9V Tb7.3V Tb10.7V
	Tb6.9V Tb7.3V Tb10.7V Tb18.7V
	Tb6.9V Tb7.3V Tb10.7V Tb18.7V Tb23.8V
	Tb6.9V Tb7.3V Tb10.7V Tb18.7V Tb23.8V Tb36.5V

<u>Weather (Sunny or Cloudy)</u> Net longwave radiation data were used to determine the weather.

<u>**T**_{snow} = Snow surface temperature</u> Three periods were categorized by snow surface temperature patterns.