0 Dynamic Environment of Mercury's Magnetosphere

Position & Magnetosphere Structure

[Zurbuchen et al., 2011]

0 Dynamic Environment of Mercury's Magnetosphere

- Solar wind dynamic pressure: ~3.5 to 9.0 nPa, six to 10 times of Earth's (~0.55 nPa)
- Solar wind density: ~30 to 120 cm⁻³, six to 30 times of Earth's (~4.5 cm⁻³)

1 Kelvin–Helmholtz Instability

[J.R.Johnson et al., 2014]

- A velocity shear exists either within a single fluid or between two distinct fluids.
- Kelvin-Helmholtz (K-H) waves at the magnetopause are driven by velocity shear between magnetospheric and magnetosheath plasma flows

$$\omega = \frac{\mathbf{k} \cdot (\rho_{msh} \mathbf{V}_{msh} + \rho_{msp} \mathbf{V}_{msp})}{\rho_{msh} + \rho_{msp}} \qquad \text{mag}$$

$$\pm i \sqrt{\left(\frac{\rho^*}{\rho_{msh} + \rho_{msp}}\right) \left(\left[\mathbf{k} \cdot (\mathbf{V}_{msh} - \mathbf{V}_{msp})\right]^2 - \frac{(\mathbf{k} \cdot \mathbf{B}_{msh})^2 + (\mathbf{k} \cdot \mathbf{B}_{msp})^2}{4\pi\rho^*}\right)} \qquad (1)$$

where ρ^* is a mean mass $\rho^* = \rho_{msh}\rho_{msp}/(\rho_{msh} + \rho_{msp})$ (msp/msh = magnetosphere/sheath). K–H waves are unstable when $(\mathbf{k} \cdot (\mathbf{V}_{msh} - \mathbf{V}_{msp}))^2 > ((\mathbf{k} \cdot \mathbf{B}_{msh})^2 + (\mathbf{k} \cdot \mathbf{B}_{msp})^2)/(4\pi\rho^*)$.

2 How to pick up Kelvin–Helmholtz waves?

Due to the lack of direct flow measurements from MESSENGER, we identified Kelvin-Helmholtz (K-H) waves through variations in the **magnetic field**, **plasma density**, and plasma temperature.

[T. Sundberg	et al., 2010)]
--------------	--------------	----

Characteristics	Comparison
Magnetic field	Magnetosheath < Magnetosphere
Plasma density	Magnetosheath > Magnetosphere
Plasma temperature	Magnetosheath < Magnetosphere

5/17

Linear magnetopause waves

[Cushman-Roisin and Becker 2007]

Peking University | Ruotan Li

Box-like signature

Nonlinear magnetopause waves

time

[Cushman-Roisin and Becker 2007]

Peking University | Ruotan Li

6/17

3 Quantitative methods to identify linear vs. nonlinear K–H waves

3.1 tanh fitting

$$B(z) = B_0 {\rm tanh}\left(\frac{z}{L}\right)$$

L: the half-thickness of the current sheet

 B_0 : the ambient magnetic field strength at the edge of the magnetopause current sheet

Bump: at least 15% above the modeled B₀

Bump: a deviation from the configuration of the magnetopause current sheet

3.2 Variations in the magnetopause normal direction

For linear-stage Kelvin-Helmholtz (K-H) waves, Ny maintains a consistent direction, while

during the nonlinear stage, Ny exhibits sign reversals (positive/negative alternations). Peking University | Ruotan Li

4 Case Study · Pre-dawnside Magnetopause

K-H waves have not been observed in this area before.

Magnetic field	High-pass filter of Bt	Plasma Density
MSP>MSH	MSH>MSP	MSH>MSP

-2

- Magnetic field intensity changes at least 40 nT
- Magnetopause crossing interval is at least 5s

Total: 17 KH waveforms Period : ~40s

-3

4 Case Study • Pre-dawnside Magnetosphere

Energy Transport: 30mHz Compressional ULF waves

- 8 compressional waveforms
- **Period:** ~35s (similar to KH waves' period)

Particle Transport: Ion-Bernstein Modes

Waves near proton cyclotron and its harmonics

4 Case Study · Pre-duskside Magnetosphere

5 Why K–H waves in our case are clearer on the pre–dawnside?

Fig. 10 Illustrating the expected evolution of the Kelvin-Helmholtz instability from a linear stage on the dayside magnetopause to a nonlinear stage on the flanks of the distant magnetotail [D.G. Sibeck et al., 2011]

Reason1 : Pre-duskside waves may not have fully developed

Reason2: a quasi-parallel shock on the dawnside

and a quasi-perpendicular shock on the duskside

K-H waves are unstable when:

$$\frac{n_0 n_1 n_2}{n_1 + n_2} [\mathbf{k} \cdot \Delta \mathbf{V}]^2 > \frac{1}{\mu_0} [(\mathbf{k} \cdot \mathbf{B}_1)^2 + (\mathbf{k} \cdot \mathbf{B}_2)^2]$$

Upstream solar wind variability drives observed discrepancies.

$ heta_{B_n}(\circ)$	Bow shock	$B_{k}^{*}(nT)$
23	Quasi-parallel	10.8
55	Quasi- perpendicular	23.26
	θ _{B_n} (∘) 23 55	$\begin{array}{c} \theta_{B_n}(\circ) & \text{Bow shock} \\ 23 & \text{Quasi-parallel} \\ 55 & \text{Quasi-perpendicular} \end{array}$

Consistent with Parker Spiral

6 Why is Liljeblad's statistic lacking cases on the pre-dawnside?

Figure 2. MESSENGER Periapsis Altitude during the Primary, XM1, and XM2 Orbital Phases. Periapsis Latitude Started at 60.0°N, Moved Northward to Peak at 84.1°N, and Then Moves Southward to 58.1°N at Mission End.

- MESSENGER orbit: changed continuously after 2013.03.18
- Liljeblad's statistic: 2011.3.24 - 2013.9.18 Our case: 2014.03.23

MESSENGER's orbits changed continuously after 18 March 2013. Liljeblad et al. (2014) primarily analyzed data collected before the orbital change.

6 Why K-H distribution in Liljeblad's statistical work is different from us?

- Orbit change
- Changes of IMF condition
- Maybe the criteria?