

Trait-based modeling of marine mesozooplankton feeding strategies at global scale

EGU meeting - Supplementary materials

Lisa Di Matteo¹, Sakina-Dorothée Ayata^{1,2}, Olivier Aumont^{1,3}

¹ Sorbonne Université, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France
 ² Institut Universitaire de France (IUF), Paris, France
 ³ Université Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, Plouzané, France
 ² Isis adi-matteo@locean.ipsl.fr

1st May 2025

Methods - FORaging EFFort (FOREFF) configuration

- Based on Kiørboe et al. (2018)
- Optimal foraging effort p :

$$p=rac{1}{
ho}rac{f_c(m-\mu)-\sqrt{A}}{f_c(\mu-m)-\mu}$$
 ; with $A=
ho\mu-f_c(
ho-\mu)(\mu-m)$

Introduction of the parameter in the mortality equations

Methods - Parameters & experiments

Variable	Description	Unit	FOREFF	LGE
e ^M x	Maximum growth efficiency	/	CF = 0.4 AF = 0.4 FF = 0.4	CF = 0.34 AF = 0.4 FF = 0.4
K _M	Half saturation constant for mortality	μ molC.L ⁻¹	0.1	0.1
<i>m</i> ^{<i>M</i>_{<i>X</i>}}	Quadratic mortality	$(\mu molC.L^{-1})^{-1}d^{-1}$	CF = 0.015 AF = 0.005 FF = 0.005	CF = 0.02 AF = 0.005 FF = 0.005
Kg	Half saturation constant for grazing	μ molC.L $^{-1}$	$\begin{array}{l} CF=20\\ AF=20\\ FF=20 \end{array}$	$\begin{array}{l} CF = 10\\ AF = 30\\ FF = 20 \end{array}$
r ^M x	Metabolic loss	d^{-1}	CF = 0.03 AF = 0.005 FF = 0.005	CF = 0.005 AF = 0.005 FF = 0.005
<i>g</i> FF	Flux-feeding rate	$(molC.L^{-1})^{-1}$	$\begin{array}{l} CF = 0 \\ AF = 0 \\ FF = 3 * 10^3 \end{array}$	$\begin{array}{l} CF=0\\ AF=0\\ FF=3*10^{3} \end{array}$
gm	Maximum grazing rate	d^{-1}	CF = 0.8 AF = 0.2 FF = 0	$\begin{array}{l} CF=0.5\\ AF=0.5\\ FF=0 \end{array}$

- All other experiments (NO_FOREFF, KILL_AF, KILL_CF & KILL_FF) have the same parameters as FOREFF.
- For NO_FOREFF, we set the foraging effort to 1.
- For KILL_XX experiments, we set grazing/flux-feeding rates to 0.

Biogeography of mesozooplankton

- Cruisers present only at high latitudes & in productive regions
- Ambushers: dominant feeding strategy at global scale
- Flux-feeders: dominant at depth, in coastal areas

Results - Impact on ecosystem biomass

• LGE (different set of parameters) has the most impact \rightarrow increase in ambushers (thus mesozooplankton) leads to decreases in microzoo-, phytoplankton

Results - Comparison with in situ studies

- Data from the study of Benedetti et al. (2023)
- More codominance in data than in model outputs (Adifferent scales)
- Similar biogeographies
- Their study is based on presence data and habitat suitability indicesestimated from niche models → does not consider biomass

Results - Impact on carbon export: particle production

2 factors control C export variations:

- production of organic particles in upper ocean (contribution of suspension feeders, especially cruisers)
- fate of sinking particles, so transfer efficiency, affected by flux-feeders

• KILL_CF: no more CF = less GOC, especially in surface layers

• KILL_FF: **no more FF = larger GOC** concentration at depth

Results - Impact on carbon export

Averaged between 150-1000 m:

 Removal of flux-feeders = increase of carbon transfer efficiency (especially in coastal/productive regions)

Perspectives - Motivation for the addition of size classes

Thank you for your attention!

APPENDIX

Appendix - Seasonal variation

Dominance of ambushers all year long (values close to one, red shading)

• Very few regions with intermediate values (between 0.3 and 0.7) \rightarrow few regions where there is a seasonal succession of the dominance between the suspension feeders

Appendix - Seasonal variation

- Focus on the Southern hemisphere \rightarrow largest variations of the foraging effort

Appendix - Seasonal variation (south of 60°S)

• Similar seasonal pattern for cruisers and their foraging effort