
STREAMFLOW FORECASTING IN THE EBRO RIVER BASIN USING MACHINE LEARNING 

AND A PHYSICAL MASS CONSTRAINT

Inmaculada C. González-Planet1, Carmelo Juez1

1 Instituto Pirenaico de Ecología, IPE-CSIC, Zaragoza, Spain Session ITS 1.1 / CL 0.9
ic.planet@ipe.csic.es

QR code to

abstract

The increasing influence of climate variability demands robust and flexible forecasting

approaches. Streamflow forecasting is essential for water resources management,

agricultural planning, flood risk prevention and mitigation, hydropower generation and

the preservation of freshwater ecosystems. Although numerous methods have been

developed for streamflow prediction, it remains a challenge due to the complex and

nonlinear nature of hydrological systems.

The use of machine learning (ML) in hydrology has gained traction due to its ability to

provide alternative or complementary approaches to traditional process-based

modelling. These models identify numerical patterns in time series data without needing

to solve conservation equations. This flexibility enables hydrological calculations in areas

where data sources are incomplete or non-existent.

In this study, a Long Short-Term Memory (LSTM) neural network has been designed

(Hochreiter & Schmidhuber, 1997) and its mass-conserving variant, the Mass-Conserving

LSTM (MC-LSTM) neural network (Hoedt et al., 2021), to learn sequential relationships

between atmospheric, climatic and geographic features and daily streamflow data. The

models have been trained and evaluated using observed data from 39 headwater

gauging stations in the northern Ebro river basin (Fig 1).
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Training scenarios

We benchmarked the global outputs of models with respect to the NSE metric. Since NSE metric

represents an overall measure of performance, it does not specifically capture the ability of models

to predict critical events, such as extreme flood events. Therefore, we designed a complementary

metric to evaluate the detection of extreme values based on the RMSE associated with a specific

return period.

To assess the performance of the models, three different streamflow prediction strategies were

developed. The objective is to compare the predictive results under three training

configurations: i) TS1: Individual models trained for each gauging station, resulting in as many

models as there are gauging stations, ii) TS2: A single regional model trained using data from

all gauging stations, and iii) TS3: Cluster-based training, where a model is trained for each

group of gauging stations within a clustering scheme (Fig 1), resulting in a total of five different

models.

Introduction

Fig 1. Location of the northern part of the Ebro river basin. Their colours represent a distinct cluster, highlighting regional 

hydrological similarities.

Fig 2. a) Architecture of a sequential model. Each output is associated with 𝑠, the sequence length. 𝑙 represents the total number of desired time steps. The inputs to the dense layer are the final hidden states of each sequence length, where are transformed into the output vector.

The length of the output vector depends on both the number of time steps and the sequence length ෝ𝒚 = [ොy𝑠, ොy𝑠+1, … , ොy𝑙]. b) The LSTM unit architecture. 𝑡 and 𝑡 − 1 is the current and previous time step of time series; 𝒉𝒕 and 𝒉𝑡−1 is current and previous hidden state; 𝒄𝑡 and 𝒄𝑡−1 is

current and previous memory cell; 𝒙𝑡 is the input vector that contains features used at 𝑡 time step; 𝒇𝑡, 𝒊𝑡 and 𝒐𝑡 are forget, input and output gates; ෤𝒄𝑡 is the update gate. c) The MC-LSTM unit architecture. 𝒂𝑡 is the current auxiliary input vector, 𝒙𝒎
𝑡 is the current mass input vector, 𝑹𝑡 is

the redistribution matrix in time step 𝑡, and 𝒎𝒕𝒐𝒕
𝑡 is the total mass vector.
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b)       The LSTM unit c)      The MC-LSTM unit
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The LSTM architecture demonstrates the best performance, with the TS2 scenario achieving the

highest median NSE across the three configurations, reaching a value of 0.66.

In relation to the magnitude of flow events, the LSTM model performs more reliably in capturing

moderate flow events, those that occur more frequently and are better represented in the

training data. However, the improved performance of the MC-LSTM model in TS1 and TS3 for

high-magnitude, low-frequency events may be attributed to its mass-conserving structure. This

physical constraint acts as a regularization mechanism, enhancing the model’s ability to

generalize when predicting events that are sparsely represented in the training dataset.

For future work, it is proposed to further investigate the MC-LSTM architecture to gain a deeper

understanding of the underlying reasons behind the results obtained.
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