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Infroduction Methodology

. o . o . . We benchmarked the global outputs of models with respect to the NSE metric. Since NSE metric To assess the performance of the models, three different streamflow prediction strategies were
The increasing influence of climate varability demands robust and flexible forecasting represents an overall measure of performance, it does not specifically capture the ability of models developed. The objective is to compare the predictive results under three training
approaches. S’rre.omflow forecos’rmg s essential .for ‘water resources management, to predict critical events, such as extreme flood events. Therefore, we designed a complementary configurations: i) TS1: Individual models trained for each gauging station, resulting in as many
agricultural planning, flood risk prevention and mifigation, hydropower generation and metric to evaluate the detection of exireme values based on the RMSE associated with a specific models as there are gauging stations, ii) TS2: A single regional model trained using data from
the preservation of freshwo’rer.egosyst’rems. Al’rhough numerous methods have been return period. all gauging stations, and iii) 1S3: Cluster-based training, where a model is tfrained for each
devgloped for streamflow predlc’rlon, It remains a challenge due to the complex and group of gauging stations within a clustering scheme (Fig 1), resulting in a total of five different
nonlinear nature of hydrological systems. Error metrics models
The use of machine learning (ML) in hydrology has gained fraction due to its ability to o _
provide alternative or complementary approaches to traditional process-based / \ Training scenarios
modelling. These models identifty numerical patterns in time series data without needing

. . . e . : : t_ot)? a I a I 4 )
to solve conservation equations. This flexibility enables hydrological calculations in areas Global error metric: NSE = 1 — St=1(v-9")
where data sources are incomplete or non-existent. Z =1 (vt -y)? TS1 1S2 1S3
In this study, a Long Short-Term Memory (LSTM) neural network has been designed _ e S92 Tos Syt <7 It x=05 individual models Reaional model Cluster-based
(Hochreiter & Schmidhuber, 1997) and its mass-conserving variant, the Mass-Conserving Flood events eor metric: RMSEr, (T) :\/ z where Ty fy < It x=1 9 models
LSTM (MC-LSTM) neural network (Hoedt et al., 2021), to learn sequential relationships = I 2=z \_ RN 2ERNG J
between atmospheric, climatic and geographic features and daily streamflow data. The k /
models have been trained and evaluated using observed data from 39 headwater b) The LSTM unit c) The MC-LSTM unit
gauging stations in the northern Ebro river basin (Fig 1). a) Neural network architecture
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Fig 2. a) Architecture of a sequential model. Each output is associated with s, the sequence length. [ represents the total number of desired time steps. The inputs to the dense layer are the final hidden states of each sequence length, where are tfransformed into the output vector.

0 50 100 km The length of the output vector depends on both the number of time steps and the sequence length ¥ = [§5, V.41, ..., ¥;]. ) The LSTM unit architecture. t and t — 1 is the current and previous time step of time series; ht and ht~1 is current and previous hidden state; ¢t and ¢t~ is

I ' current and previous memory cell; xt is the input vector that contains features used at t time step; f¢, it and ot are forget, input and output gates; ¢t is the update gate. ¢) The MC-LSTM unit architecture. at is the current auxiliary input vector, xt, is the current mass input vector, Rt is
Fig 1. Location of the northern part of the Ebro river basin. Their colours represent a distinct cluster, highlighting regional the redistribution matrix in time step ¢, and my,, is the total mass vector.
hydrological similarities.

Result ‘
esults Conclusions
: : The LSTM architecture demonstrates the best performance, with the TS2 scenario achieving the
Global error metric Flood events error metric P J

highest median NSE across the three configurations, reaching a value of 0.66.
/ \ / High-frequency flow events (return period = 0.5 -1 years) Low-frequency flow events (return period = 2 years) \ In relation to the magnitude of flow events, the LSTM model performs more reliably in capturing

Lo . . . . - _ - _ - _ _ moderate flow events, those that occur more frequently and are better represented in the
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> o i | Fa * | * miz o 1% 551(2) high-magnitude, low-frequency events may be attributed fo its mass-conserving structure. This
0.6 i a B i, | M1 5 I‘ : o o | © z . . T 0 L physical constraint acts as a regularization mechanism, enhancing the model’s ability to
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2 . | a l 5 i | * . * 8, o i l i LN i i 'i + * * Ti B ii * * * 1 ; Ei i generalize when predicting events that are sparsely represented in the training dataset.
R B ° l ° o = 04l @i* 'I'H- ﬁ !i* l 1 S 04 T i* ! * i For future work, it is proposed to further investigate the MC-LSTM architecture to gain a deeper
" | L P P 0.2 o o o 0.2 o o o o o understanding of the underlying reasons behind the results obtained.
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