Integrating Machine Learning with ADCP Data for Advanced Sediment
Transport and Hydrodynamics Monitoring

Mohammad Tanvir Haque Tuhin'?, Christoph Mudersbach’, Reinhard Hinkelmann?

' Bochum University of Applied Sciences, Institute of Hydraulic Engineering and Hydromechanics, Department of Civil and Environmental Engineering, Germany
> Technische Universitat Berlin, Chair of Water Resources Management and Modeling of Hydrosystems, Institute of Civil Engineering, Germany

Introduction and objectives

Acoustic Doppler Current Profilers (ADCP) provide a rich yet
underutilized dataset for continuous monitoring of
hydrodynamics and sediment transport. Accurate prediction
of sediment-related variables is essential for river engineering,
morphological studies, and environmental management.
Among key proxies, Bottom Track Velocity (BT_Vel) serves as a
critical indicator for understanding bedload movement and
near-bed sediment dynamics.

The main aims of this work are:

= Bridge physical sensing (ADCP) with machine learning (ML)
and deep learning (DL) for enhanced sediment and flow
monitoring.

= Evaluate a broad set of ML & DL models for predicting
BT Vel.

= Assess model performance on both a large-scale lab
samples (22,650) and real-world field samples (5,900).

= Compare Split vs. Cross-Validation (CV) to examine model
reliability and generalization.

Methodolog

o, R

Comprehensive Approach to Bottom Track Velocity Prediction

Validation Techniques Lab Data Collection

- Split (80:20) vs. Cross Validation
(5-fold)
* Metrics: R?2, MSE

* Flume: 16x0.6 m, slope 0.5%
« Sand bed: D;, = 0.45 mm
« 22.65K samples (RS5)

Deep Learning Models

« ANN, CNN, RNN (Simple
RNN, GRU, LSTM)

* Hybrid Model: CNN+LSTM ﬁ Velocity |
*Tuning: Bayesian & manual Prediction ,-
* Regularization: Early ----7
stopping, dropout

' Field Data Collection
Bottom Track .

* River Stever, fixed site
« 7 campaigns (2023-24)
* 5.9K samples (RS5)

Machine Learning Models — Preprocessing

& Selecting Features
* Ensemble: Random Forest,
Gradient Boosting, XGBoost,
LightGBM, CatBoost
* Meta-model: Stacking

* Cleaned noisy/incomplete data
« Standardized inputs
« Selected key features: Depth, Mean

Regressor Speed, Velocity StdDev, SNR,
Correlation(sound quality), Bin Distance
« Target: Bottom Track Velocity (BT_Vel)
MM Bochum University
I=<€01 01 of Applied Sciences '
LJ ‘J TECHNOLOGY BUSINESS HEALTH

BT Vel

Depth -

vel stdDewv -

Correlation - -0.10

Mean Speed -

SNR - -0.12

Vel Expected StdDev - -0.14

Bin_Distance -

Random Forest

Gradient Boosting

LSTM + CNN

LSTM

CNN

LightGBM

CatBoost

ANN

XGBoost

GRU

Stacking Regressor

RNN

0.20

0.43

0.26

BT Vel _

0.23

-
4
=
&

Results (Lab)

Feature Correlation Heatmap (Lab Data)

Vel StdDev

0.20 -0.10 0.43

Correlation
Mean Speed

-0.12 -0.14 0.26

- 0.6

- 0.4

- 0.2

- 0.0

SNR

Bin_Distance

Vel Expected StdDev

Lab Data - R2 Comparison (Split vs Cross-Validation)

0.438

0.580

0.804
0.783

0.787
0.757

0.800
0.729

0.802
0.723

0.782
0.714

0.752
0.743

0.741
0.741

0.784
0.696

0.747
0.731

0.771
0.702

0.788

0.763

0.4

0.5

B ML Models

0.6
R2 Score

DL Models

0.7 0.8

Cross-Validation (lighter tone)

o Random Forest and Gradient Boosting achieved the
highest and most consistent R* scores across both Split

(darker

tone)

and Cross-Validation,

showing strong

generalization. LightGBM, CatBoost, and XGBoost followed
with slightly lower but stable performance.

o LSTM and LSTM+CNN matched top ML models in Split
testing and remained competitive during CV; other DL
models (CNN, GRU, ANN) performed well in Split but
dropped in CV, indicating sensitivity to data variation and
potential overfitting.

o Despite strong Split-set scores, the Stacking Regressor and
RNN showed sharp R? drops in CV; RNN ranked lowest,
likely due to limitations of simple recurrent architectures in

structured lab setting.

TECHNISCHE
UNIVERSITAT
BERLIN

UF

Deutsche
Forschungsgemeinschaft

Project-ID 528740160 — FIP 61

Results (Field)

Feature Correlation Heatmap (Field Data)

BT _Wel 0.15 0.06 0.20

1.0
ID.E

- 0.6

Depth - -0.02 0.09 0.36

Vel StdDew - 0.30 0.30 0.52 0.08 0.31 0.25

- 0.4

Correlation -0.05

-0.2

Mean_Speed -
- 0.0

SMR - 0.15 -0.02 0.08

Vel Expected StdDewv - 0.06 0.09 0.31

o

(=

.20 0.36

o

Bin_Distance - .25

BT Vel _
Depth _
SNR
StdDev

Vel StdDev
Correlation _
Mean Speed

[k}
(W]
=
[1a}
et
L]
(]
=
]

pected

Vel Ex

Field Data - R2 Comparison (Split vs Cross-Validation)

0.573

Random Forest 0.603

0.558
0.584

CatBoost

0.539

LightGBM 0.573

0.541

XGBoost 0.567

0.560

LSTM 0.528

0.562

LSTM + CNN
0.525

0.552

CNN
0.520

0.548

RNN

0.504

o
n
=
u

Gradient Boosting

GRU
ANN

o
1)
o
N

Stacking Regressor 0.464

0.4 05 0.6 0.7 0.8
R2 Score

B DL Models Cross-Validation (lighter tone)

s ML Models

o Tree-based ML models performed robustly under real-river,

noisy conditions; Random Forest led, followed by CatBoost,
LightGBM, and XGBoost, all showing strong generalizability
across Split and CV. Gradient Boosting was competitive but
slightly less consistent.

DL models like LSTM, LSTM+CNN, and CNN showed solid R?
in Split, with slight drops in CV due to data sparsity and fold
variability. RNN surprisingly outperformed ANN and GRU in
field data, making it a viable lightweight DL option under
limited-data conditions.

o The Stacking Regressor, despite moderate Split performance,

showed a marked R? decline in CV, suggesting overfitting and
low resilience to fold variation—consistent with its lab result.

Note: The comparison was further validated using MSE values.
Bayesian Optimization did not improve DL performance.

Scan for
Abstract &

Further Data

EGU25-8296
DOI:10.5194/egusphere-
- " egu25-8296

EGUiSemoy 2025

Discussion

o ADCP-derived features (e.g., bottom track velocity)
effectively predicted sediment transport dynamics, with
high model performance in lab conditions (large, clean,
consistent data) and lower generalizability in field
conditions (smaller, variable, temporally sparse data).

o Cross-Validation exposed overfitting risks more clearly than
Split-Validation, especially for deep learning and ensemble
models.

o Tree-based models, especially Random Forest, consistently
outperformed others across both datasets, demonstrating
strong resilience to noise and real-river variability.

o While DL models like LSTM performed well in lab settings,
their sensitivity to field data limitations (e.g., volume,
noise) led to CV drops—underscoring the need for
regularization and data augmentation in real-world
deployments.

o DL models showed smaller CV performance drops on field
data compared to lab, likely due to lower variance and
simpler structure in available data

Conclusion and Future Outlook

This study presents a robust framework integrating ADCP-
derived data with ML/DL models for predicting Bottom Track
Velocity, enhancing sediment transport analysis. Tree-based
models (e.g., Random Forest) demonstrated high accuracy
and stability, while DL models showed potential with further
tuning.

Building on these findings, we plan long-term monitoring of a
3.72 km River Lippe reach, integrating ADCP proxies with

Delft3D and ML for hybrid, physics-informed hydrodynamic
and sediment transport prediction.

Survey 3.72 Km River
Lippe Reach

Utilize ADCP and Multi-
Sensor for Long-Term

Monitoring

Contact:
Mohammd Tanvir Haque Tuhin
mohammd.tuhin@hs-bochum.de

Qutstanding Student & PhD

Supplementary Script - Example of code pipeline

This notebook provides a part of reproducible pipeline used in the study:

"Integrating Machine Learning with ADCP Data for Advanced Sediment Transport and Hydrodynamics Monitoring"
It includes:

¢ Scalar feature extraction from .mat files

* Preprocessing and feature engineering (e.g., Relative ABS)

* Machine learning model training (Split & Stratified CV)

» Deep learning model training (LSTM+CNN with batch size tuning)

» Avisual summary (SHAP-based feature importance for ML models on the lab dataset)

All code is based on the actual implementation used in the poster:

EGU25-8296 | Mohammad Tanvir Haque Tuhin, Bochum University of Applied Sciences

v Import All Required Libraries and Set Random Seed

Core packages for data manipulation and reproducibility
import numpy as np

import pandas as pd

import random, os

ML libraries

from sklearn.model_selection import train_test_split, StratifiedkKFold
from sklearn.preprocessing import StandardScaler, KBinsDiscretizer
from sklearn.pipeline import make_pipeline

from sklearn.base import clone

from sklearn.metrics import mean_squared_error, r2_score

ML models

from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, StackingRegressor
from xgboost import XGBRegressor

from lightgbm import LGBMRegressor

from catboost import CatBoostRegressor

DL libraries

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

from tensorflow.keras.optimizers import Adam

For loading MATLAB (.mat) files
from scipy.io import loadmat

Set random seeds for reproducible results
seed_value = 42

np.random.seed(seed_value)
tf.random.set_seed(seed_value)
random.seed(seed_value)
os.environ["TF_DETERMINISTIC_OPS"] = "1"

Convert .mat Files — Scalar Features + Relative_ABS(Accoustic Backscatter
Strength)

Function to extract and process a specific field from a .mat file
def process_flow_rate(file_path, feature_name, field_name, matrix_field=True, max_time_steps=1620, preprocess=None):
matlab_data = loadmat(file_path, struct_as_record=False, squeeze_me=True)
struct_data = matlab_data[feature_name]
field_data = getattr(struct_data, field_name)
if preprocess is not None:
field_data = preprocess(field_data)
return np.nanmean(field_data, axis=(@, 1)) if matrix_field else field_data

Clean bottom track velocity: remove negatives and average across beams
def preprocess_bottom_track(data):
data[data < 0] = ©

return np.nanmean(data, axis=1)

Prepare feature list from .mat files into rows for tabular analysis
alpha = .07 # Acoustic attenuation factor for Relative ABS calculation
final_data = []

NOTE: This assumes 'processed_data' is already filled from your .mat extraction
for label, features in processed_data.items():
for i in range(1618): # 1618 time steps
row = {"Flow Rate": label}
for key, values in features.items():
if values is not None and len(values) > i:
row[key.split('_", 1)[1]] = values[i]

Feature Engineering: calculate Bin_Distance and Relative ABS
if ('System_Cell_Start' in features and 'System_Cell_Size' in features and 'System_SNR' in features):
bin_distance = features['System_Cell_Start'][i] + features['System_Cell_Size'][i] / 2
row['Bin_Distance'] = bin_distance
snr = features['System_SNR'][i]
row['Relative_ABS'] = snr + 20 * np.logl®@(bin_distance) + 2 * alpha * bin_distance

final_data.append(row)

Create the final structured DataFrame

df = pd.DataFrame(final_data)

features = ['Depth', 'Vel_StdDev', 'Correlation', 'Mean_Speed', 'SNR', 'Vel_Expected_StdDev', 'Bin_Distance', 'Relative_ABS']
target = 'BT_Vel'

df = df.dropna(subset=features + [target]) # Drop rows with missing values

X = df[features].values

y = df[target].values

v Train & Evaluate ML Models using Stratified Cross-Validation

Normalize feature scales
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Define ML models for benchmarking
models = {
"Linear Regression": LinearRegression(),
#"Decision Tree": DecisionTreeRegressor(random_state=42),
"Random Forest": RandomForestRegressor(random_state=42, n_estimators=100),
"Gradient Boosting": GradientBoostingRegressor(random_state=42, n_estimators=100),
"XGBoost": XGBRegressor(random_state=42, n_estimators=100, learning_rate=0.1),
"LightGBM": LGBMRegressor(random_state=42, n_estimators=100, learning_rate=0.1),
"CatBoost": CatBoostRegressor(random_state=42, verbose=0),
"Stacking Regressor": StackingRegressor(
estimators=[
('rf', RandomForestRegressor(random_state=42)),
('gb', GradientBoostingRegressor(random_state=42))
1

final_estimator=GradientBoostingRegressor(random_state=42)

Stratify continuous target using quantile binning

binner = KBinsDiscretizer(n_bins=10, encode='ordinal', strategy='quantile')
y_binned = binner.fit_transform(y.reshape(-1, 1)).ravel()

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

Run cross-validation
ml_cv_results = []
for name, model in models.items():
r2_scores, mse_scores = [], []
for train_idx, test_idx in skf.split(X_scaled, y_binned):
X_tr, X_val = X_scaled[train_idx], X_scaled[test_idx]
y_tr, y_val = y[train_idx], y[test_idx]
pipeline = make_pipeline(StandardScaler(), clone(model))
pipeline.fit(X_tr, y_tr)
preds = pipeline.predict(X_val)
r2_scores.append(r2_score(y_val, preds))
mse_scores.append(mean_squared_error(y_val, preds))
ml_cv_results.append({
"Model": name,
"Mean R2": np.mean(r2_scores),
#"Std R2": np.std(r2_scores),
"Mean MSE": np.mean(mse_scores),

#"Std MSE": np.std(mse_scores)
)]

v Train & Evaluate ML Models using Split Validation (80/20)

Simple 80/20 split validation for comparison
X_train_split, X_test_split, y_train_split, y_test_split = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

ml_split_results = []
for name, model in models.items():
model.fit(X_train_split, y_train_split)
y_pred = model.predict(X_test_split)
ml_split_results.append({
"Model": name,
"MSE": mean_squared_error(y_test_split, y_pred),
"R2": r2_score(y_test_split, y_pred)
b

v Train & Tune Deep Learning Model (LSTM + CNN) with Batch Size

Reshape input for CNN+LSTM (samples, time_steps, features)

X_train_dl, X_test_dl, y_train_dl, y_test_dl = train_test_split(X_scaled, y, test_size=0.2, random_state=seed_value)
X_train_dl = X_train_dl.reshape((X_train_dl.shape[0], 1, X_train_dl.shape[1]))

X_test_dl = X_test_dl.reshape((X_test_dl.shape[@], 1, X_test_dl.shape[1]))

Define the hybrid model
def create_cnn_lstm_model():
model = keras.Sequential([
layers.ConvlD(64, 1, activation='relu', input_shape=(1, X_train.shape[1])),
layers.ConvlD(32, 1, activation='relu'),
layers.Flatten(),
layers.Reshape((1, -1)),
layers.LSTM(64, return_sequences=True),
layers.LSTM(32),
layers.Dropout(0.2),
layers.Dense(32, activation='relu'),
layers.Dense(1)
1
model.compile(optimizer=Adam(learning_rate=0.001), loss='mse', metrics=['mse'])
return model

Evaluate across multiple batch sizes
batch_sizes = [6, 8, 10, 12, 16, 20, 24, 32, 40, 64]
dl_results = []

for bs in batch_sizes:
model = create_cnn_lstm_model()
early_stop = keras.callbacks.EarlyStopping(monitor="val_loss', patience=7, restore_best_weights=True)
model.fit(X_train_dl, y_train_dl, validation_data=(X_test_dl, y_test_dl),
batch_size=bs, epochs=50, callbacks=[early_stop], verbose=0)
y_pred = model.predict(X_test_dl).flatten()
dl_results.append({
"Batch Size": bs,
"MSE": mean_squared_error(y_test_dl, y_pred),
"R2 Score": r2_score(y_test_dl, y_pred)
b

Feature importance for Bottom Track Velocity prediction based on SHAP values
across all trained machine learning models (lab dataset).

Mean Absclute SHAP Value

Feature Importance Across All Models (SHAP)

0.00200

0.00175

0.00150

0.00125

0.00100

0.00075 4

0.00050

0.00025 A

0.00000 -

Features

	ForEGU_Final
	Slide 1

	EGU25-8296_Supplementary_Code_MTH_Tuhin_HS_Bochum_DE

