
Integrating Machine Learning with ADCP Data for Advanced Sediment
Transport and Hydrodynamics Monitoring

Introduction and objectives

Mohammad Tanvir Haque Tuhin¹,², Christoph Mudersbach¹, Reinhard Hinkelmann²
¹ Bochum University of Applied Sciences, Institute of Hydraulic Engineering and Hydromechanics, Department of Civil and Environmental Engineering, Germany

² Technische Universität Berlin, Chair of Water Resources Management and Modeling of Hydrosystems, Institute of Civil Engineering, Germany

Acoustic Doppler Current Profilers (ADCP) provide a rich yet
underutilized dataset for continuous monitoring of
hydrodynamics and sediment transport. Accurate prediction
of sediment-related variables is essential for river engineering,
morphological studies, and environmental management.
Among key proxies, Bottom Track Velocity (BT_Vel) serves as a
critical indicator for understanding bedload movement and
near-bed sediment dynamics.

The main aims of this work are:

▪ Bridge physical sensing (ADCP) with machine learning (ML)
and deep learning (DL) for enhanced sediment and flow
monitoring.

▪ Evaluate a broad set of ML & DL models for predicting
BT_Vel.

▪ Assess model performance on both a large-scale lab
samples (22,650) and real-world field samples (5,900).

▪ Compare Split vs. Cross-Validation (CV) to examine model
reliability and generalization.

Results (Lab) Results (Field) Discussion

Methodology

o Random Forest and Gradient Boosting achieved the
highest and most consistent R² scores across both Split
(darker tone) and Cross-Validation, showing strong
generalization. LightGBM, CatBoost, and XGBoost followed
with slightly lower but stable performance.

o LSTM and LSTM+CNN matched top ML models in Split
testing and remained competitive during CV; other DL
models (CNN, GRU, ANN) performed well in Split but
dropped in CV, indicating sensitivity to data variation and
potential overfitting.

o Despite strong Split-set scores, the Stacking Regressor and
RNN showed sharp R² drops in CV; RNN ranked lowest,
likely due to limitations of simple recurrent architectures in
structured lab setting.

o Tree-based ML models performed robustly under real-river,
noisy conditions; Random Forest led, followed by CatBoost,
LightGBM, and XGBoost, all showing strong generalizability
across Split and CV. Gradient Boosting was competitive but
slightly less consistent.

o DL models like LSTM, LSTM+CNN, and CNN showed solid R²
in Split, with slight drops in CV due to data sparsity and fold
variability. RNN surprisingly outperformed ANN and GRU in
field data, making it a viable lightweight DL option under
limited-data conditions.

o The Stacking Regressor, despite moderate Split performance,
showed a marked R² decline in CV, suggesting overfitting and
low resilience to fold variation—consistent with its lab result.

Note: The comparison was further validated using MSE values.
Bayesian Optimization did not improve DL performance.

o ADCP-derived features (e.g., bottom track velocity)
effectively predicted sediment transport dynamics, with
high model performance in lab conditions (large, clean,
consistent data) and lower generalizability in field
conditions (smaller, variable, temporally sparse data).

o Cross-Validation exposed overfitting risks more clearly than
Split-Validation, especially for deep learning and ensemble
models.

o Tree-based models, especially Random Forest, consistently
outperformed others across both datasets, demonstrating
strong resilience to noise and real-river variability.

o While DL models like LSTM performed well in lab settings,
their sensitivity to field data limitations (e.g., volume,
noise) led to CV drops—underscoring the need for
regularization and data augmentation in real-world
deployments.

o DL models showed smaller CV performance drops on field
data compared to lab, likely due to lower variance and
simpler structure in available data

Conclusion and Future Outlook

This study presents a robust framework integrating ADCP-

derived data with ML/DL models for predicting Bottom Track

Velocity, enhancing sediment transport analysis. Tree-based

models (e.g., Random Forest) demonstrated high accuracy

and stability, while DL models showed potential with further

tuning.

Building on these findings, we plan long-term monitoring of a

3.72 km River Lippe reach, integrating ADCP proxies with

Delft3D and ML for hybrid, physics-informed hydrodynamic

and sediment transport prediction.

Contact:
Mohammd Tanvir Haque Tuhin
mohammd.tuhin@hs-bochum.de

Project-ID 528740160 – FIP 61

Scan for
Abstract &
Further Data
EGU25-8296
DOI:10.5194/egusphere-
egu25-8296

Data Collection in Lab and Field

This notebook provides a part of reproducible pipeline used in the study:

"Integrating Machine Learning with ADCP Data for Advanced Sediment Transport and Hydrodynamics Monitoring"

It includes:

Scalar feature extraction from .mat files

Preprocessing and feature engineering (e.g., Relative ABS)

Machine learning model training (Split & Stratified CV)

Deep learning model training (LSTM+CNN with batch size tuning)

A visual summary (SHAP-based feature importance for ML models on the lab dataset)

All code is based on the actual implementation used in the poster:

EGU25-8296 | Mohammad Tanvir Haque Tuhin, Bochum University of Applied Sciences

Supplementary Script - Example of code pipeline

Import All Required Libraries and Set Random Seed

Core packages for data manipulation and reproducibility
import numpy as np
import pandas as pd
import random, os

ML libraries
from sklearn.model_selection import train_test_split, StratifiedKFold
from sklearn.preprocessing import StandardScaler, KBinsDiscretizer
from sklearn.pipeline import make_pipeline
from sklearn.base import clone
from sklearn.metrics import mean_squared_error, r2_score

ML models
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, StackingRegressor
from xgboost import XGBRegressor
from lightgbm import LGBMRegressor
from catboost import CatBoostRegressor

DL libraries
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.optimizers import Adam

For loading MATLAB (.mat) files
from scipy.io import loadmat

Set random seeds for reproducible results
seed_value = 42
np.random.seed(seed_value)
tf.random.set_seed(seed_value)
random.seed(seed_value)
os.environ["TF_DETERMINISTIC_OPS"] = "1"

Convert .mat Files → Scalar Features + Relative_ABS(Accoustic Backscatter

Strength)

Function to extract and process a specific field from a .mat file
def process_flow_rate(file_path, feature_name, field_name, matrix_field=True, max_time_steps=1620, preprocess=None):
 matlab_data = loadmat(file_path, struct_as_record=False, squeeze_me=True)
 struct_data = matlab_data[feature_name]
 field_data = getattr(struct_data, field_name)
 if preprocess is not None:
 field_data = preprocess(field_data)
 return np.nanmean(field_data, axis=(0, 1)) if matrix_field else field_data

Clean bottom track velocity: remove negatives and average across beams
def preprocess_bottom_track(data):
 data[data < 0] = 0

 return np.nanmean(data, axis=1)

Prepare feature list from .mat files into rows for tabular analysis
alpha = 0.07 # Acoustic attenuation factor for Relative ABS calculation
final_data = []

NOTE: This assumes 'processed_data' is already filled from your .mat extraction
for label, features in processed_data.items():
 for i in range(1618): # 1618 time steps
 row = {"Flow Rate": label}
 for key, values in features.items():
 if values is not None and len(values) > i:
 row[key.split('_', 1)[1]] = values[i]

 # Feature Engineering: calculate Bin_Distance and Relative ABS
 if ('System_Cell_Start' in features and 'System_Cell_Size' in features and 'System_SNR' in features):
 bin_distance = features['System_Cell_Start'][i] + features['System_Cell_Size'][i] / 2
 row['Bin_Distance'] = bin_distance
 snr = features['System_SNR'][i]
 row['Relative_ABS'] = snr + 20 * np.log10(bin_distance) + 2 * alpha * bin_distance

 final_data.append(row)

Create the final structured DataFrame
df = pd.DataFrame(final_data)
features = ['Depth', 'Vel_StdDev', 'Correlation', 'Mean_Speed', 'SNR', 'Vel_Expected_StdDev', 'Bin_Distance', 'Relative_ABS']
target = 'BT_Vel'
df = df.dropna(subset=features + [target]) # Drop rows with missing values
X = df[features].values
y = df[target].values

Train & Evaluate ML Models using Stratified Cross-Validation

Normalize feature scales
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

Define ML models for benchmarking
models = {
 # "Linear Regression": LinearRegression(),
 #"Decision Tree": DecisionTreeRegressor(random_state=42),
 "Random Forest": RandomForestRegressor(random_state=42, n_estimators=100),
 "Gradient Boosting": GradientBoostingRegressor(random_state=42, n_estimators=100),
 "XGBoost": XGBRegressor(random_state=42, n_estimators=100, learning_rate=0.1),
 "LightGBM": LGBMRegressor(random_state=42, n_estimators=100, learning_rate=0.1),
 "CatBoost": CatBoostRegressor(random_state=42, verbose=0),
 "Stacking Regressor": StackingRegressor(
 estimators=[
 ('rf', RandomForestRegressor(random_state=42)),
 ('gb', GradientBoostingRegressor(random_state=42))
],
 final_estimator=GradientBoostingRegressor(random_state=42)
)
}

Stratify continuous target using quantile binning
binner = KBinsDiscretizer(n_bins=10, encode='ordinal', strategy='quantile')
y_binned = binner.fit_transform(y.reshape(-1, 1)).ravel()
skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

Run cross-validation
ml_cv_results = []
for name, model in models.items():
 r2_scores, mse_scores = [], []
 for train_idx, test_idx in skf.split(X_scaled, y_binned):
 X_tr, X_val = X_scaled[train_idx], X_scaled[test_idx]
 y_tr, y_val = y[train_idx], y[test_idx]
 pipeline = make_pipeline(StandardScaler(), clone(model))
 pipeline.fit(X_tr, y_tr)
 preds = pipeline.predict(X_val)
 r2_scores.append(r2_score(y_val, preds))
 mse_scores.append(mean_squared_error(y_val, preds))
 ml_cv_results.append({
 "Model": name,
 "Mean R²": np.mean(r2_scores),
 #"Std R²": np.std(r2_scores),
 "Mean MSE": np.mean(mse_scores),

 #"Std MSE": np.std(mse_scores)
 })

Train & Evaluate ML Models using Split Validation (80/20)

Simple 80/20 split validation for comparison
X_train_split, X_test_split, y_train_split, y_test_split = train_test_split(X_scaled, y, test_size=0.2, random_state=42)

ml_split_results = []
for name, model in models.items():
 model.fit(X_train_split, y_train_split)
 y_pred = model.predict(X_test_split)
 ml_split_results.append({
 "Model": name,
 "MSE": mean_squared_error(y_test_split, y_pred),
 "R²": r2_score(y_test_split, y_pred)
 })

Train & Tune Deep Learning Model (LSTM + CNN) with Batch Size

Reshape input for CNN+LSTM (samples, time_steps, features)
X_train_dl, X_test_dl, y_train_dl, y_test_dl = train_test_split(X_scaled, y, test_size=0.2, random_state=seed_value)
X_train_dl = X_train_dl.reshape((X_train_dl.shape[0], 1, X_train_dl.shape[1]))
X_test_dl = X_test_dl.reshape((X_test_dl.shape[0], 1, X_test_dl.shape[1]))

Define the hybrid model
def create_cnn_lstm_model():
 model = keras.Sequential([
 layers.Conv1D(64, 1, activation='relu', input_shape=(1, X_train.shape[1])),
 layers.Conv1D(32, 1, activation='relu'),
 layers.Flatten(),
 layers.Reshape((1, -1)),
 layers.LSTM(64, return_sequences=True),
 layers.LSTM(32),
 layers.Dropout(0.2),
 layers.Dense(32, activation='relu'),
 layers.Dense(1)
])
 model.compile(optimizer=Adam(learning_rate=0.001), loss='mse', metrics=['mse'])
 return model

Evaluate across multiple batch sizes
batch_sizes = [6, 8, 10, 12, 16, 20, 24, 32, 40, 64]
dl_results = []

for bs in batch_sizes:
 model = create_cnn_lstm_model()
 early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=7, restore_best_weights=True)
 model.fit(X_train_dl, y_train_dl, validation_data=(X_test_dl, y_test_dl),
 batch_size=bs, epochs=50, callbacks=[early_stop], verbose=0)
 y_pred = model.predict(X_test_dl).flatten()
 dl_results.append({
 "Batch Size": bs,
 "MSE": mean_squared_error(y_test_dl, y_pred),
 "R² Score": r2_score(y_test_dl, y_pred)
 })

Feature importance for Bottom Track Velocity prediction based on SHAP values

across all trained machine learning models (lab dataset).

	ForEGU_Final
	Slide 1

	EGU25-8296_Supplementary_Code_MTH_Tuhin_HS_Bochum_DE

