

EGU General Assembly 2025 27th April – 02nd May 2025

Integrating User-Generated POI Data and Satellite Imagery for Enhanced Urban Land Use Classification: A Topic Modeling Approach

Ravi Satyappa Dabbanavar and Arindam Biswas

Supplementary Material

Surveil

Sustainable URban & REgional Analysis lab

Dr. Arindam Biswas Associate Professor at the Department of Architecture and Planning, Indian Institute of Technology Roorkee.

Mr. Ravi Satyappa Dabbanavar Doctoral scholar at the DAP, IIT Roorkee. Bachelors in Planning, **Topic: Approach for essential urban land**use mapping by integrating Remote Sensing and User-generated Big Data

+6

Research scholars

•	Urban Inequality	
•	Polarization	
•	Knowladge Econo	

- Knowledge Economy
- Regional growth
- Big Data Analysis
- Al in urban analytics
- Urban & Regional governance

CONTENTS

- i. Title Slide
- ii. Key Challenges in Urban Land-Use Mapping
- iii. Existing Land-Use Mapping Approaches
- iv. Aim
- v. Objectives
- vi. Methodology
- vii.Model Evaluation
- viii.Results
- ix. Applications
- x. Conclusion
- xi. References

3

Definitions

Point of Interest (POI):

Refers to any specific point location that someone may find useful or interesting, such as a landmark, restaurant, or any place of significance, often used in mapping and GPS navigation systems for identifying locations (*ESRI*, 2023).

Topic Model:

Topic models are statistical models used to discover hidden topics or themes within a collection of documents. These models analyze patterns of word co-occurrence in the text and group words that frequently appear together into topics (*Blei et al., 2003*).

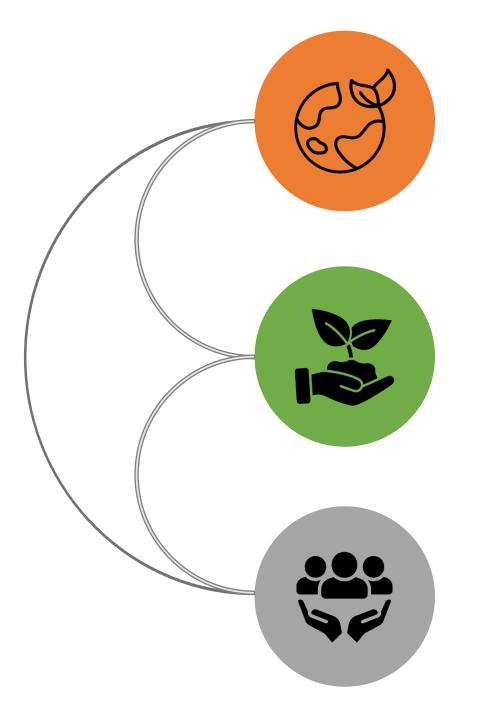
Coherence value:

Used to evaluate the quality of the topics generated by a Topic model. It assesses how interpretable the topics are by examining the semantic similarity between the words in each topic *(Stevens et al., 2012)*.

Global Challenges: The Importance of Land-Use Mapping

50% of the population now lives in cities, projected to reach 70% by 2050.

Rapid urban growth creates a need for precise land-use mapping



Mitigating Environmental Impact:

Helps in identifying urban green spaces, preserving ecosystems, and planning for climate resilience.

Supporting Sustainable Development Goals (SDGs):

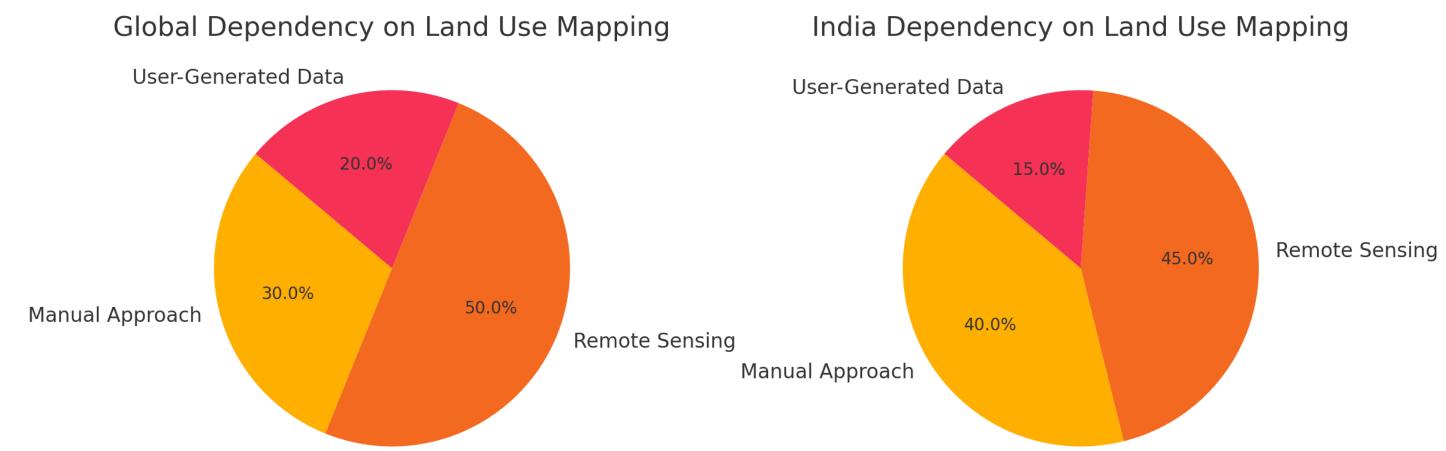
Ensures equitable access to resources and promotes balanced urban-rural development.

Optimizing Public Services:

Facilitates the efficient allocation of utilities such as transportation, water supply, and waste management.

> Source: Yu & Fang, 2023, Gong, P., Li, X., & Zhang, W. 2019, United Nations. 2023

Different Land-use Mapping Approaches



- Manual Approach: Relies on human observation and on-ground surveys to map land use.
- **Remote Sensing:** Utilizes satellite imagery or aerial photography to capture and analyze data about land use patterns on a large scale, enabling quick and accurate mapping.
- User-Generated Data: Involves contributions from individuals or communities through platforms like crowd-sourcing real-time and localized land use information.

Source: UNEP Annual Report 2023, See, L., et al. (2016), Wulder, M. A., & Coops, N. C. (2014).

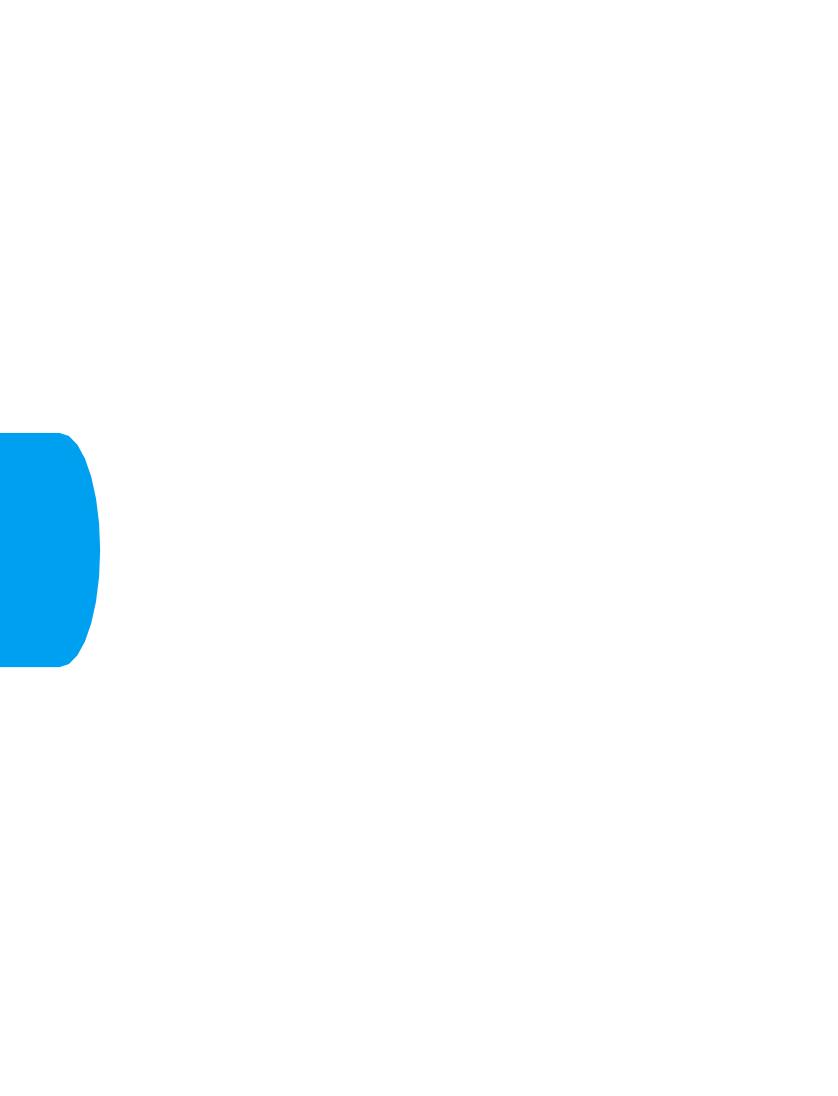
Challenges Across Different LU Mapping Approaches

Approach	Challenges Identified	References
Manual Approach	 Labor-intensive and time-consuming: Requires physical effort for data collection and constant updates. Scalability issues: Inefficient for managing growing urban regions. Subject to human error: Inconsistent measurements and subjective interpretations. 	Harley (1987), Kain & Baigent (1992), Waldhoff & Bareth (2009)
Remote Sensing-based Approach	 Limited real-time analysis: Data collection is not fast enough to respond to dynamic urban changes. Struggles with complex urban features: Difficulty in distinguishing mixed land-use areas. High cost of sensors and processing: Expensive equipment and technical expertise required. 	Govindu et al. (2019), Gong et al. (2013), Liu et al. (2018)
User-generated Data- based Approach	 Volume: Massive datasets are difficult to store, process, and analyze efficiently. Variety: Integrating structured, semi-structured, and unstructured data from diverse sources is challenging. Complexity: Advanced tools are needed to analyze spatiotemporal patterns and relationships. Real-time Data Handling: Processing live data streams is resource-intensive and may cause delays. Fragmented Data: Data spread across multiple systems is hard to consolidate and interpret effectively. 	Gandomi & Haider (2015), Assur & Rowshankish (2024), Gil (2022)

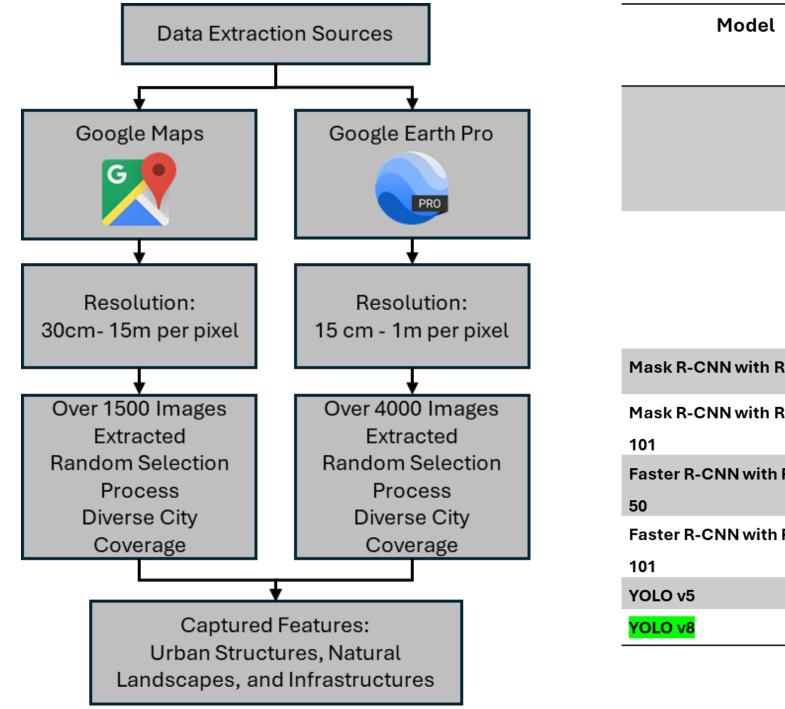
Aim

To develop an efficient, scalable, and integrated framework for urban land-use classification by combining remote sensing techniques and user-generated data to address urban growth challenges and governance needs.

Remote sensing data to more readable unified format



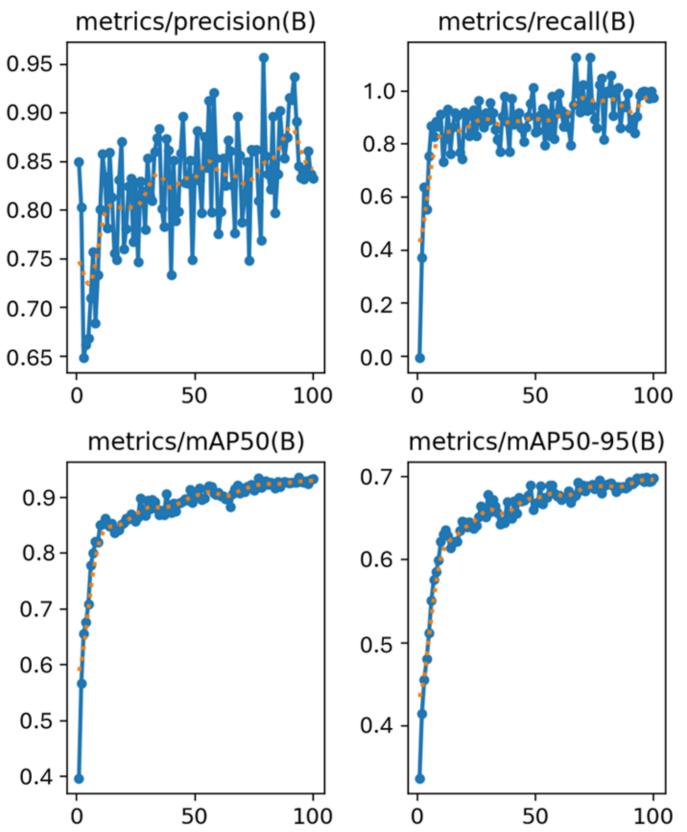
Object detection/segmentation models comparison results



Туре Average P Precision attain at v $AP = \sum n$ Mask R-CNN with ResNet-50 Segmentation Mask R-CNN with ResNet-Segmentation Faster R-CNN with ResNet-**Object Detection** Faster R-CNN with ResNet-**Object Detection Object Detection Object Detection**

Precision (AP)	Mean Average Precision	Average Inference Time			
	<u>mAP@0.5</u>	(seconds/image)			
n the model can	Average value of AP over all	Time taken per image on average by the			
various levels of	classes at an IoU threshold	model for processing and fulfilling the			
recall	value of 0.5	demands it must deliver against the			
		image			
$n\left(R_n-R_{n-1}\right)P_n$	$mAP@0.5 = \frac{1}{N} \sum_{i=1}^{N} AP_i$	Average Inference Time (seconds/image) Total Inference Time for All Images = <u>(Seconds)</u> Number of Images Processed			
0.41	0.43	0.058			
0.53	0.56	0.064			
0.49	0.50	0.049			
0.55	0.57	0.054			
0.75	0.78	0.02			
<mark>0.89</mark>	<mark>0.848</mark>	<mark>9.40</mark>			

Object detection/segmentation models comparison results

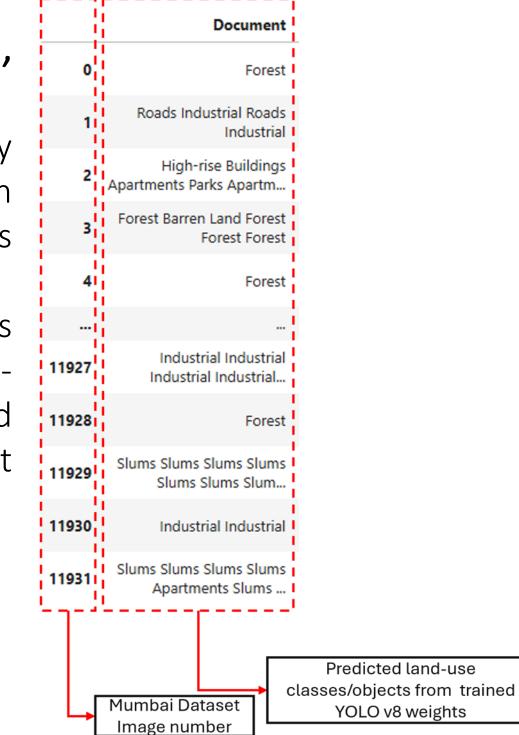


Performance Metrics Recall, mAP):

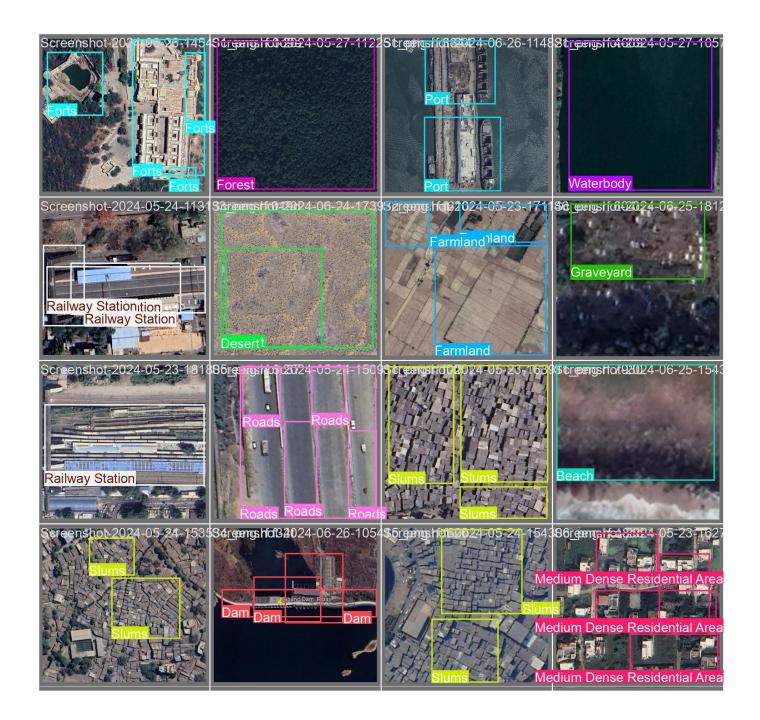
- Precision and recall metrics steadily improve, with recall reaching the high precision, indicating that the model is very effective at finding most objects.
- mAP@0.5 and mAP@0.5-0.95 metrics show steady growth, with mAP@0.5-0.95 nearing 0.7, reflecting solid detection performance across different IoU thresholds.

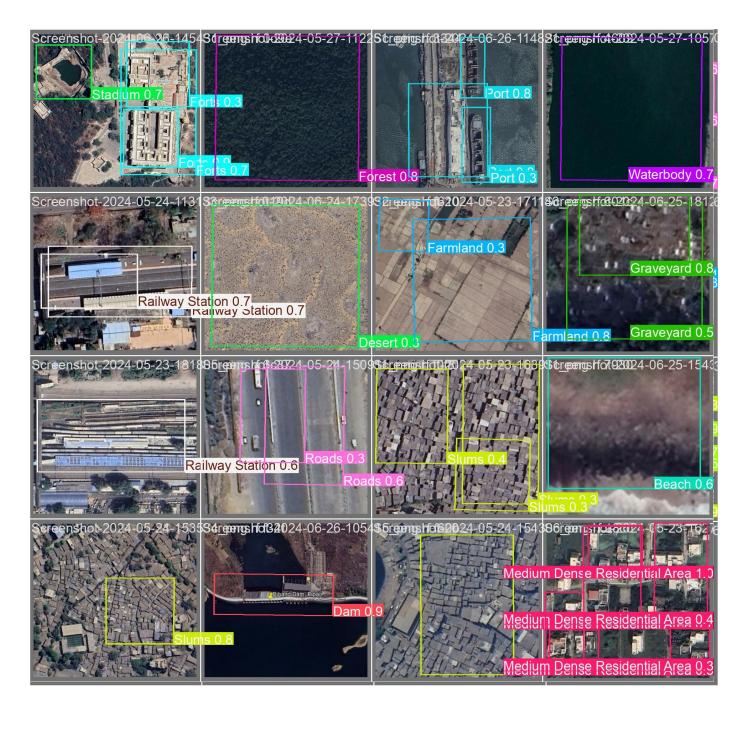
(Precision,

etrics steadily hing the high the model is ost objects. -0.95 metrics th mAP@0.5lecting solid cross different



Object detection/segmentation models comparison results

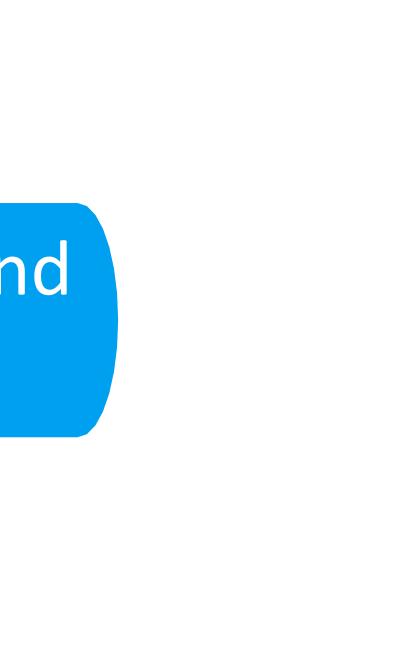




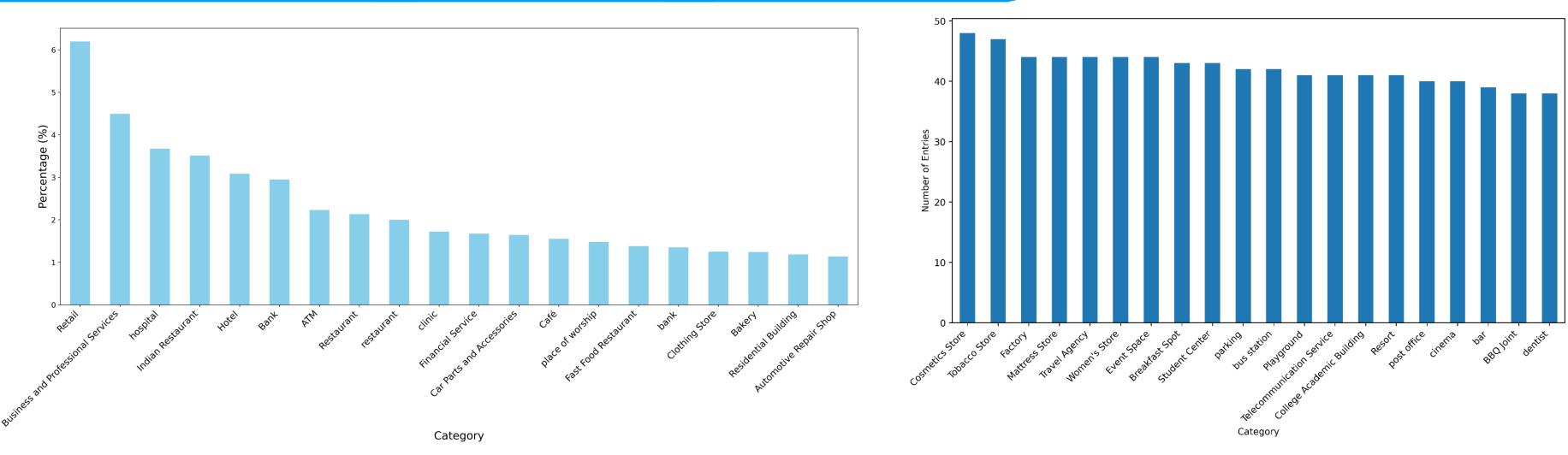
Trained Dataset

Predicted Dataset

User-generated data collection and to convert to single format



Data Preparation and Materials



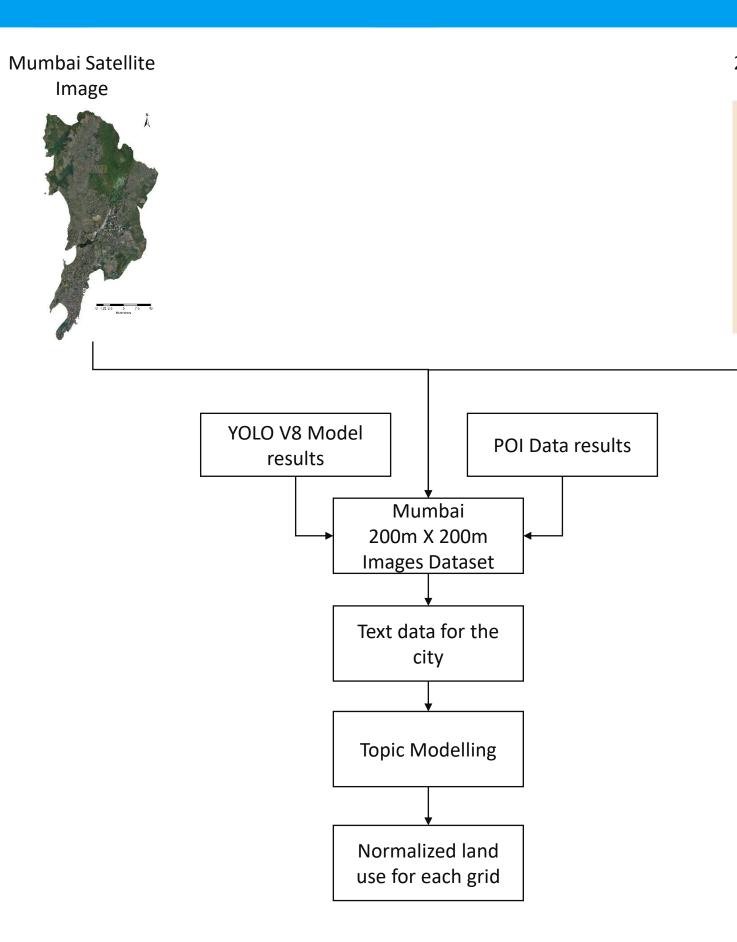
Top 20 Proportional Representation of Categories

- A total of 48,641 points were extracted from OSM's complex mesh (<u>OSM</u> accessed on 18th Dec 2023).
- Foursquare yielded 38,239 points from a massive database of user-generated places (accessed on 1st Dec 2023).
- Using the nearby search, the advanced mapping feature and API of ArcGIS Developer contributed to our data pool with 10,642 points (ArcGIS developers accessed on 13th Dec 2023).
- In total, we acquired **97,522** POI data. Further, after various cleaning steps the we were able to use **85,328** POI data.

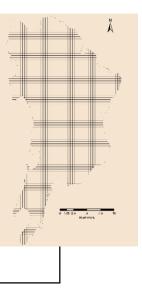
Top 20 Underrepresented POI Categories – Discussed alongside the paragraph detailing category imbalance.

Source: UNEP Annual Report 2023, See, L., et al. (2016), Wulder, M. A., & Coops, N. C. (2014).

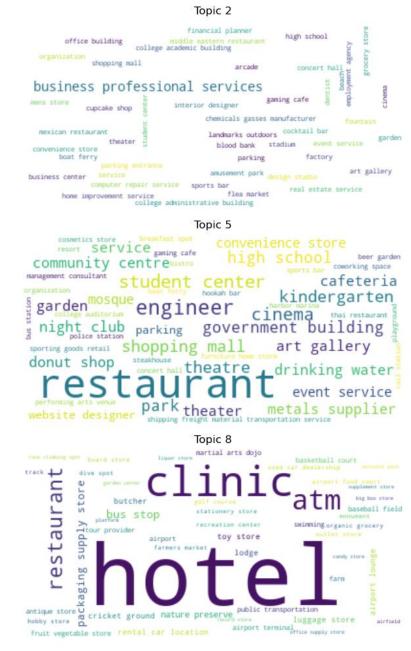
Collecting Text data



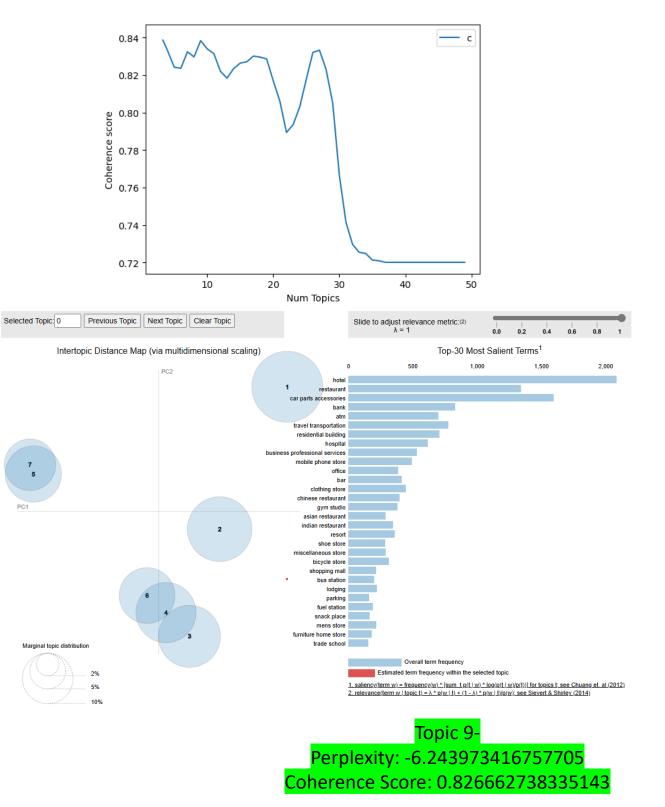
200m X 200m Grid



LDA Topic Model

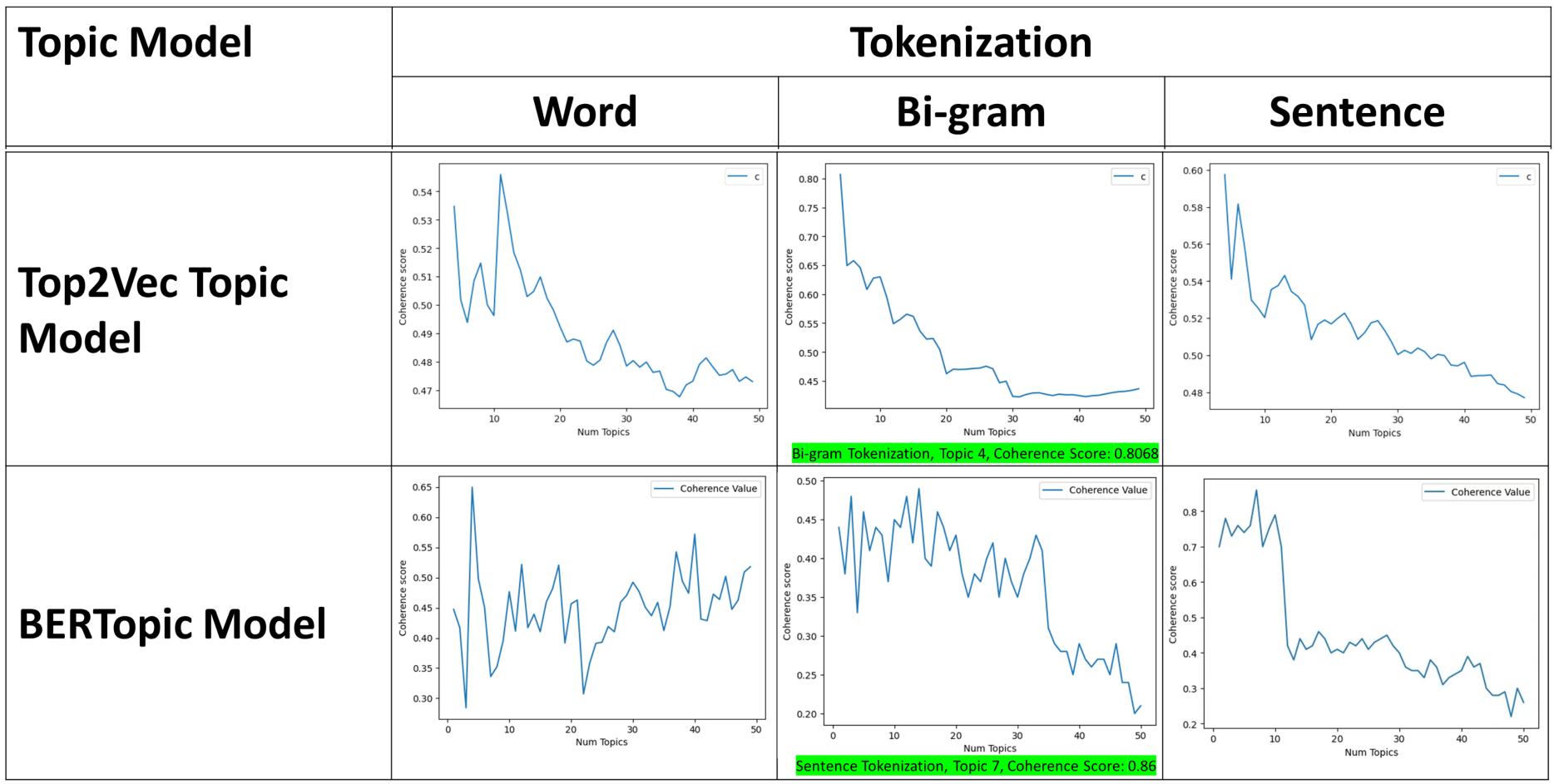


Sentence Tokenization



Source: Jason Chuang, 2012, Sievert & Shirley (2014)

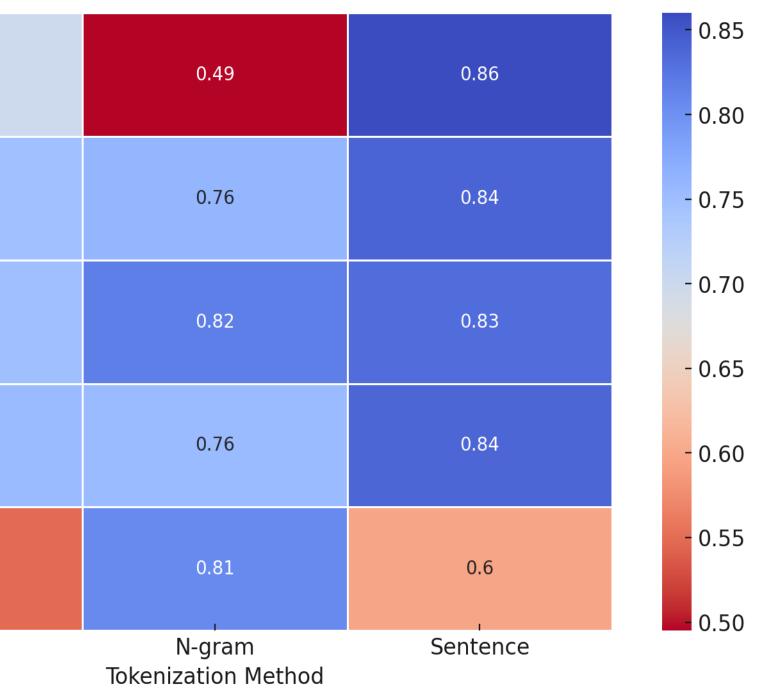
Topic Models comparison Results



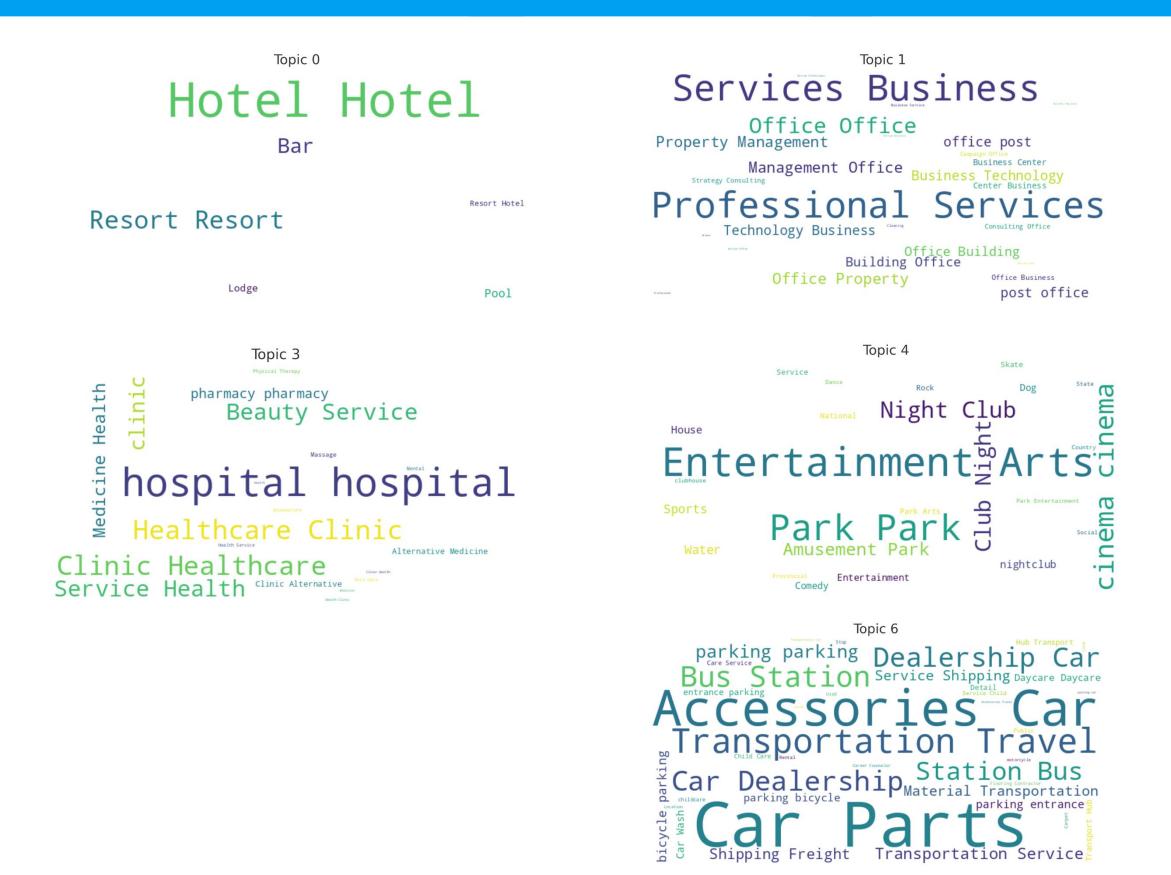
Topic Models comparison Results

Model Type	Tokenization Method	Coherence Score	Number of Topics	Perplexity (Best Score)	-	Heatmap of C
LDA	Word	0.7499	20	-27.2774	BERTopic	0.7
LDA LDA LSI	N-gram Sentence Word	0.8164 0.8320 0.7546	20 9 26	-31.0310 -13.9060 N/A	HDP -	0.75
LSI LSI HDP	N-gram Sentence Word	0.7550 0.8381 0.7478	24 9 18	N/A N/A N/A	Model Type LDA	0.75
HDP HDP Top2Vec	N-gram Sentence Word	0.7611 0.8392 0.5486	26 9 11	N/A N/A N/A	- ISI	0.75
Top2Vec Top2Vec BERTopic	N-gram Sentence Word	0.8068 0.5975 0.65	4 4 4	N/A N/A NA	Top2Vec	0.55
BERTopic BERTopic	N-gram Sentence	0.495 0.86	13 7	N/A N/A	_	Word

Coherence Scores by Model Type and Tokenization Method

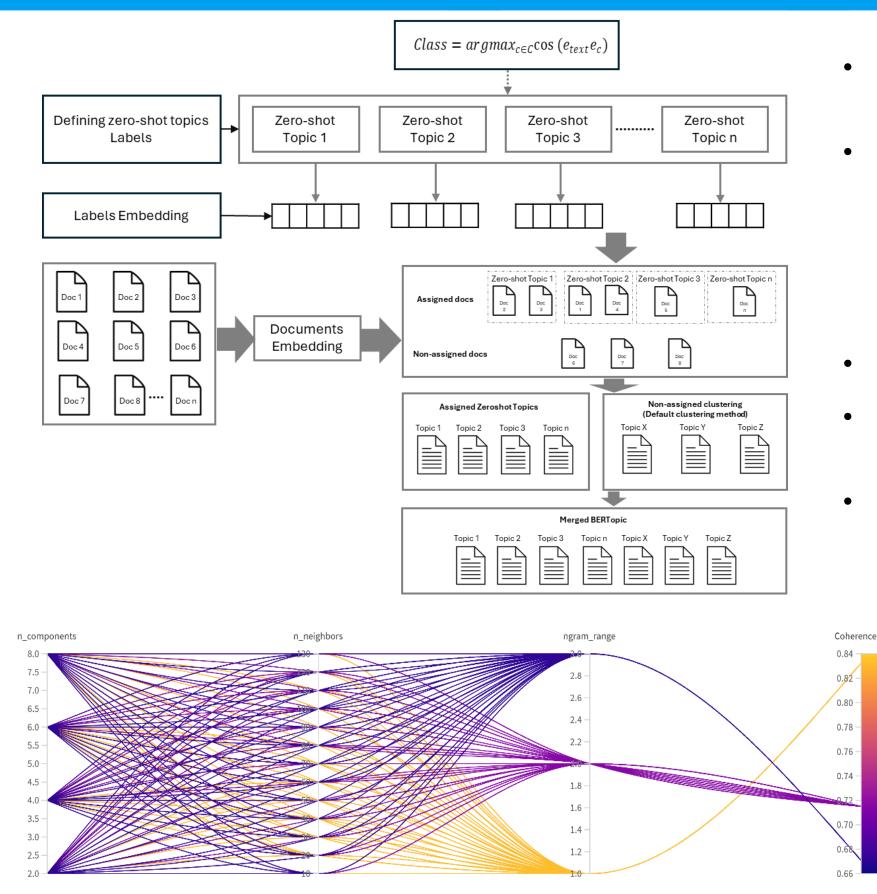


BERTopic Topic Model: Sentence Tokenization



Source: Grootendorst, M., 2022, Jason Chuang, 2012, Sievert & Shirley (2014)

Zero-shot BERTopic Topic Model



- •
- of components, neighbors, and n-gram range.)
 - •
 - •
 - •
- were not affecting the model.
- 0.967.

_	Representative_Docs	Representation	Name	Count	Topic	
	[Fast Food Restaurant, Fast Food Restaurant, F	[restaurant, gastropub, diner, burger, food, c	Restaurant	5639	0	0
	[Retail, Retail, Retail]	[retail, retailer, supermarket, grocery, drugs	Retail	3685	1	1
110 Topics	[Bank, bank, Bank]	[bank, banking, loans, finance, atm, , , , ,]	Banks	2011	2	2
assigned in the	[hospital, hospital, hospital]	[hospital, medical, medicine, doctors, laborat	Hospital	1413	3	3
Zero-shot mode	[Business and Professional Services, Business	[professional, services, business, consultant,	General Business	1274	4	4
(With 75%						
, , , , , , , , , , , , , , , , , , ,	[Utility Company]	[utility, company, , , , , , ,]	Electric Power Plant	1	105	105
similarity)	[Apartment or Condo]	[condo, apartment, or, , , , , ,]	Apartment	1	106	106
Coherence Value	[Nursing Home]	[nursing, , , , , , ,]	Nursing Home	1	107	107
0.92	[Golf Course]	[golf, course, , , , , ,]	Golf Course	1	108	108
	[Track]	[track, , , , , , ,]	Race Course	1	109	109



110 sub classes of Atal Mission for Rejuvenation and Urban Transformation (AMRUT) as labels (Ministry of Urban Development, Govt. of India).

We experimented with a hyperparameter of clustering and tokenization (Number

For components, we considered 2 to 8 with steps of 2.

For neighbors, we considered 10 to 130 with steps of 10.

For the n-gram range, we considered words, bi-gram, and tri-gram.

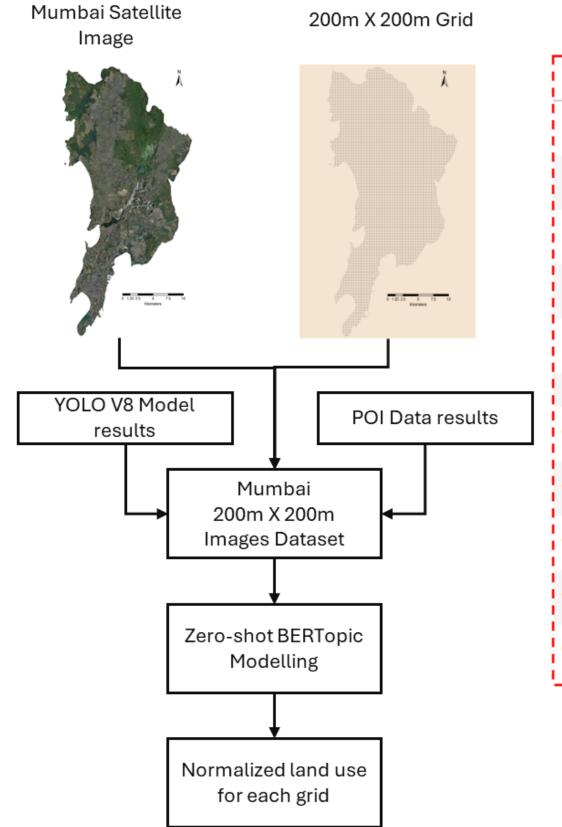
The highest coherence value observed was 0.8415.

We observed that the hyperparameters, values of components, and neighbors

Only the N-gram showed importance in the model, with a negative correlation of -

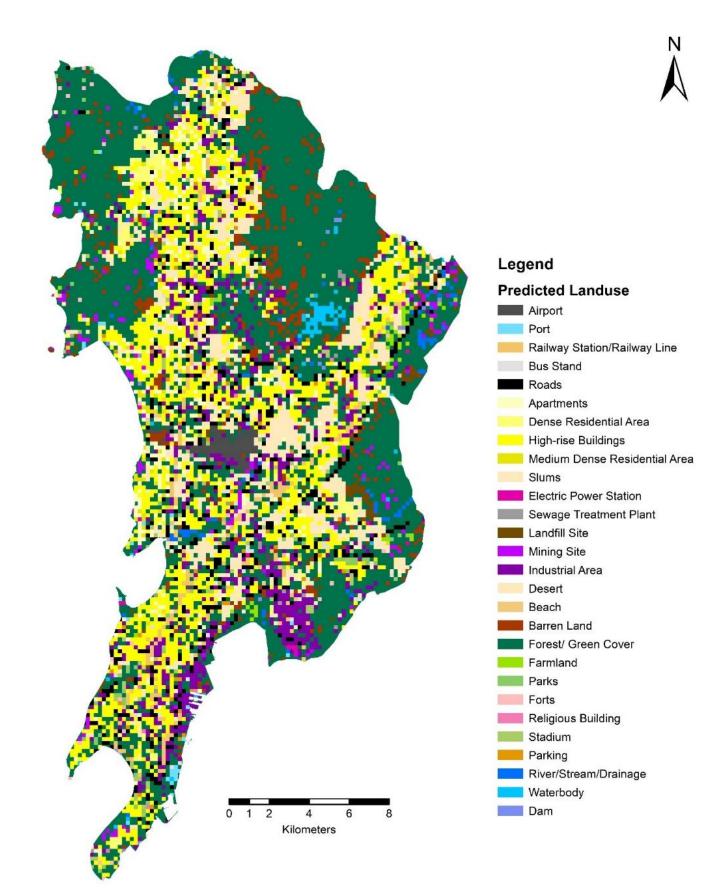
Source: Grootendorst, M., 2022, Jason Chuang, 2012, Sievert & Shirley (2014)

Zero-shot BERTopic Topic Model



	Document	Торіс	Name	Representation	Representative_Docs	Top_n_words	Representative_document
0	Forest	0	Forest	[forest, land, parks, mining, river, , , , ,]	[Forest, Forest, Forest]	forest - land - parks - mining - river	True
1	Roads Industrial Roads Industrial	· /	Roads	[roads, industrial, mining, railway, buildings	[Roads Roads Roads Roads Industrial, Roads	roads - industrial - mining - railway - buildi	False
2	High-rise Buildings Apartments Parks Apartm	1	High-rise Buildings	[buildings, apartments, building, high, roads,	[High-rise Buildings High-rise Buildings Apa	buildings - apartments - building - high - roa	False
3	Forest Barren Land Forest Forest Forest	0.	Forest	[forest, land, parks, mining, river, , , , ,]	[Forest, Forest, Forest]	forest - land - parks - mining - river	False
41 1	Forest	0	Forest	[forest, land, parks, mining, river, , , , ,]	[Forest, Forest, Forest]	forest - land - parks - mining - river	True
1927	Industrial Industrial Industrial Industrial	7	Railway Station	[industrial, railway, station, airport, buildi	[Railway Station Industrial Railway Station	industrial - railway - station - airport - bui	False
1928	Forest	0	Forest	[forest, land, parks, mining, river, , , , ,]	[Forest, Forest, Forest]	forest - land - parks - mining - river	True
1929	Slums Slums Slums Slums Slums Slums Slum	2	Slums	[slums, buildings, roads, land, , , , ,]	[Slums Slums Slums Slums High-rise Buildin	slums - buildings - roads - land	False
1930	Industrial Industrial	3	Industrial	[industrial, building, buildings, , , , , ,]	[Industrial Industrial Industrial, Industria	industrial - building - buildings	False
1931	Slums Slums Slums Slums Apartments Slums		Slums	[slums, buildings, roads, land, , , , ,]	[Slums Slums Slums Slums High-rise Buildin	slums - buildings - roads - land	False
	Mumbai Dataset Image number		ed Land-use and POI data	objects	nd-use topics from hot BERTopic		

Results



Limitations:

Future Directions:

- classification tasks.

• Data quality inconsistency in user-generated contributions. • Limited real-time updates from current data sources.

• Considering more user-generated data sources.

• Expand the framework to accommodate dynamic urban changes. • Explore additional AI models for better performance in multi-class

References

- 1. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, Link
- 2. Stevens, K., Kegelmeyer, P., Andrzejewski, D., & Buttler, D. (2012). Exploring topic coherence over many models and many topics. EMNLP-CoNLL, Link
- 3. Sievert, C., & Shirley, K. (2014). LDAvis: A method for visualizing and interpreting topics. Workshop on Interactive Language Learning, Visualization, and Interfaces.
- Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-4. 144.
- Assur, M., & Rowshankish, H. (2024). Real-time Big Data Challenges in Urban Analytics. Urban Computing and Sustainability. 5.
- Gil, J. (2022). Crowdsourcing and the role of citizen-generated spatial data in urban studies. *Cities*, 129, 103825. 6.
- Harley, J. B. (1987). The Map and the Development of the History of Cartography. Imago Mundi, 38(1), 35-45. 7.
- Kain, R. J. P., & Baigent, E. (1992). The Cadastral Map in the Service of the State: A History of Property Mapping. 8.
- Waldhoff, G., & Bareth, G. (2009). Land use/land cover mapping using high-resolution remote sensing data. ISPRS Journal of Photogrammetry and Remote 9. Sensing.
- **10.** Govindu, V., et al. (2019). Remote Sensing for Urban Land-Use Classification. *Remote Sensing Applications: Society and Environment*.
- 11. Gong, P., Li, X., & Zhang, W. (2019). 40-year retrospective of remote sensing in China. ISPRS Journal of Photogrammetry and Remote Sensing.
- 12. Liu, Y., et al. (2018). Classification of Urban Land Use Using Remote Sensing Data. IEEE Transactions on Geoscience and Remote Sensing.
- 13. See, L., et al. (2016). Crowdsourcing and citizen science: A review of uses in the context of Earth observation. Remote Sensing, 8(6), 509.
- 14. Wulder, M. A., & Coops, N. C. (2014). Satellites: Make Earth observations open access. Nature, 513, 30–31.
- **15.** Grootendorst, M. (2022). BERTopic: Leveraging BERT and c-TF-IDF to create easily interpretable topics. *arXiv preprint*.
- 16. Chuang, J. (2012). Termite: Visualization techniques for assessing textual topic models. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
- **17.** UNEP Annual Report (2023). United Nations Environment Programme.
- **18.** United Nations (2023). World Urbanization Prospects.
- 19. Yu, Y., & Fang, H. (2023). The impact of urban growth on land use change. Urban Studies Journal.

