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Definitions

Point of Interest (POI):

Refers to any specific point location that someone may find useful or interesting, such as a landmark, 
restaurant, or any place of significance, often used in mapping and GPS navigation systems for identifying 
locations (ESRI, 2023).

Topic Model:

Topic models are statistical models used to discover hidden topics or themes within a collection of 
documents. These models analyze patterns of word co-occurrence in the text and group words that 
frequently appear together into topics (Blei et al., 2003).

Coherence value:

Used to evaluate the quality of the topics generated by a Topic model. It assesses how interpretable the 
topics are by examining the semantic similarity between the words in each topic  (Stevens et al., 2012).

4



Global Challenges: The Importance of Land-Use Mapping
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Mitigating Environmental Impact: 
Helps in identifying urban green spaces, preserving 
ecosystems, and planning for climate resilience.

Supporting Sustainable 
Development Goals (SDGs): 
Ensures equitable access to resources and promotes 
balanced urban-rural development.

Optimizing Public Services: 
Facilitates the efficient allocation of utilities such as 
transportation, water supply, and waste management.

50% of the population now 
lives in cities, projected to 

reach 70% by 2050.

Rapid urban growth creates a 
need for precise land-use 

mapping

Source: Yu & Fang, 2023, Gong, P., Li, X., & Zhang, W. 
2019, United Nations. 2023 



Different Land-use Mapping Approaches

Source: UNEP Annual Report 2023, See, L., et al. (2016), 
Wulder, M. A., & Coops, N. C. (2014).

• Manual Approach: Relies on human observation and on-ground surveys to map land use.
• Remote Sensing: Utilizes satellite imagery or aerial photography to capture and analyze data about land use patterns 

on a large scale, enabling quick and accurate mapping.
• User-Generated Data: Involves contributions from individuals or communities through platforms like crowd-sourcing 

real-time and localized land use information.



Challenges Across Different LU Mapping Approaches

Approach Challenges Identified References
Manual Approach • Labor-intensive and time-consuming: Requires physical effort for data collection and 

constant updates.
• Scalability issues: Inefficient for managing growing urban regions.
• Subject to human error: Inconsistent measurements and subjective interpretations.

Harley (1987), Kain & 
Baigent (1992), 
Waldhoff & Bareth 
(2009)

Remote Sensing-based 
Approach

• Limited real-time analysis: Data collection is not fast enough to respond to dynamic 
urban changes.

• Struggles with complex urban features: Difficulty in distinguishing mixed land-use 
areas.

• High cost of sensors and processing: Expensive equipment and technical expertise 
required.

Govindu et al. (2019), 
Gong et al. (2013), Liu et 
al. (2018)

User-generated Data-
based Approach

• Volume: Massive datasets are difficult to store, process, and analyze efficiently.
• Variety: Integrating structured, semi-structured, and unstructured data from diverse 

sources is challenging.
• Complexity: Advanced tools are needed to analyze spatiotemporal patterns and 

relationships.
• Real-time Data Handling: Processing live data streams is resource-intensive and may 

cause delays.
• Fragmented Data: Data spread across multiple systems is hard to consolidate and 

interpret effectively.

Gandomi & Haider 
(2015), Assur & 
Rowshankish (2024), Gil 
(2022)



Aim

To develop an efficient, scalable, and integrated framework for urban land-use 
classification by combining remote sensing techniques and user-generated data to 

address urban growth challenges and governance needs.



Remote sensing data to more 
readable unified format



Object detection/segmentation models comparison results



Object detection/segmentation models comparison results

Performance Metrics (Precision, 
Recall, mAP):
• Precision and recall metrics steadily 

improve, with recall reaching the high 
precision, indicating that the model is 
very effective at finding most objects.

• mAP@0.5 and mAP@0.5-0.95 metrics 
show steady growth, with mAP@0.5-
0.95 nearing 0.7, reflecting solid 
detection performance across different 
IoU thresholds.



Object detection/segmentation models comparison results

Trained Dataset Predicted Dataset



User-generated data collection and 
to convert to single format



Data Preparation and Materials

Source: UNEP Annual Report 2023, See, L., et al. (2016), 
Wulder, M. A., & Coops, N. C. (2014).

• A total of 48,641 points were extracted from OSM's complex mesh ( OSM accessed on 18th Dec 2023). 
• Foursquare yielded 38,239 points from a massive database of user-generated places (accessed on 1st Dec 2023). 
• Using the nearby search, the advanced mapping feature and API of ArcGIS Developer contributed to our data pool with 

10,642 points (ArcGIS developers accessed on 13th Dec 2023). 
• In total, we acquired 97,522 POI data. Further, after various cleaning steps the we were able to use 85,328 POI data.

Top 20 Underrepresented POI Categories – Discussed alongside the paragraph detailing category imbalance.Top 20 Proportional Representation of Categories 

https://www.openstreetmap.org/export#map=11/19.1121/72.9712
https://developers.arcgis.com/documentation/mapping-apis-and-services/places/nearby-search/


Collecting Text data
Mumbai Satellite 

Image
200m X 200m Grid

Mumbai 
200m X 200m 

Images Dataset

POI Data results
YOLO V8 Model 

results

Normalized land 
use for each grid

Topic Modelling 

Text data for the 
city



Topic 20-
Perplexity: -27.27744411845799 

Coherence Score: 0.7498718330446936 

Source: Jason Chuang, 2012, Sievert & Shirley (2014)

Topic 20-
Perplexity:  -31.03100825290643

Coherence Score:  0.8164359323836088

Topic 9-
Perplexity: -6.243973416757705 

Coherence Score: 0.826662738335143 

Word Tokenization Bi-gram Tokenization
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Sentence Tokenization

LDA Topic Model

https://dl.acm.org/doi/abs/10.1145/2254556.2254572
https://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf
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Topic Models comparison Results



Model 
Type

Tokenization 
Method

Coherence 
Score

Number of 
Topics

Perplexity 
(Best Score)

LDA Word 0.7499 20 -27.2774

LDA N-gram 0.8164 20 -31.0310

LDA Sentence 0.8320 9 -13.9060

LSI Word 0.7546 26 N/A

LSI N-gram 0.7550 24 N/A

LSI Sentence 0.8381 9 N/A

HDP Word 0.7478 18 N/A

HDP N-gram 0.7611 26 N/A

HDP Sentence 0.8392 9 N/A

Top2Vec Word 0.5486 11 N/A

Top2Vec N-gram 0.8068 4 N/A

Top2Vec Sentence 0.5975 4 N/A

BERTopic Word 0.65 4 NA

BERTopic N-gram 0.495 13 N/A

BERTopic Sentence 0.86 7 N/A

Heatmap of Coherence Scores by Model Type and Tokenization Method
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Topic Models comparison Results



19

Source: Grootendorst, M., 2022, Jason  Chuang, 2012, 
Sievert & Shirley (2014)

BERTopic Topic Model: Sentence Tokenization

https://dl.acm.org/doi/abs/10.1145/2254556.2254572
https://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf
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Source: Grootendorst, M., 2022, Jason  Chuang, 2012, 
Sievert & Shirley (2014)

Zero-shot BERTopic Topic Model

• 110 sub classes of Atal Mission for Rejuvenation and Urban Transformation 
(AMRUT) as labels (Ministry of Urban Development, Govt. of India). 

• We experimented with a hyperparameter of clustering and tokenization (Number 
of components, neighbors, and n-gram range.)

• For components, we considered 2 to 8 with steps of 2.

• For neighbors, we considered 10 to 130 with steps of 10.

• For the n-gram range, we considered words, bi-gram, and tri-gram.

• The highest coherence value observed was 0.8415.

• We observed that the hyperparameters, values of components, and neighbors 
were not affecting the model.

• Only the N-gram showed importance in the model, with a negative correlation of -
0.967.

110 Topics 
assigned in the 

Zero-shot model
(With 75% 
similarity)

Coherence Value: 
0.92

https://dl.acm.org/doi/abs/10.1145/2254556.2254572
https://nlp.stanford.edu/events/illvi2014/papers/sievert-illvi2014.pdf
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Zero-shot BERTopic Topic Model
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Results

Limitations:
• Data quality inconsistency in user-generated contributions.
• Limited real-time updates from current data sources.

Future Directions:
• Considering more user-generated data sources.
• Expand the framework to accommodate dynamic urban changes.
• Explore additional AI models for better performance in multi-class 

classification tasks.
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