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Point of Interest (POI):

Refers to any specific point location that someone may find useful or interesting, such as a landmark,
restaurant, or any place of significance, often used in mapping and GPS navigation systems for identifying
locations (ESRI, 2023).

Topic Model:

Topic models are statistical models used to discover hidden topics or themes within a collection of
documents. These models analyze patterns of word co-occurrence in the text and group words that
frequently appear together into topics (Blei et al., 2003).

Coherence value:

Used to evaluate the quality of the topics generated by a Topic model. It assesses how interpretable the
topics are by examining the semantic similarity between the words in each topic (Stevens et al., 2012).



Global Challenges: The Importance of Land-Use Mapping

Mitigating Environmental Impact:

Helps in identifying urban green spaces, preserving

. ecosystems, and planning for climate resilience.
50% of the population now

lives in cities, projected to

reach 70% by 2050. Supporting Sustainable

Development Goals (SDGs):

Ensures equitable access to resources and promotes
balanced urban-rural development.

Rapid urban growth creates a
need for precise land-use

mapping ... i i
Optimizing Public Services:

Facilitates the efficient allocation of utilities such as
transportation, water supply, and waste management.

Source: Yu & Fang, 2023, Gong, P, Li, X., & Zhang, W.
2019, United Nations. 2023
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Different Land-use Mapping Approaches

Global Dependency on Land Use Mapping India Dependency on Land Use Mapping

User-Generated Data User-Generated Data

Remote Sensing

Manual Approach
Remote Sensing

Manual Approach

* Manual Approach: Relies on human observation and on-ground surveys to map land use.

* Remote Sensing: Utilizes satellite imagery or aerial photography to capture and analyze data about land use patterns
on a large scale, enabling quick and accurate mapping.

* User-Generated Data: Involves contributions from individuals or communities through platforms like crowd-sourcing
real-time and localized land use information.

Source: UNEP Annual Report 2023, See, L., et al. (2016),
Wulder, M. A., & Coops, N. C. (2014).



Challenges Across Different LU Mapping Approaches

Scalability issues: Inefficient for managing growing urban regions.
Subject to human error: Inconsistent measurements and subjective interpretations.

Approach Challenges Identified References
Manual Approach ¢ Labor-intensive and time-consuming: Requires physical effort for data collection and |Harley (1987), Kain &
constant updates. Baigent (1992),

Waldhoff & Bareth
(2009)

Remote Sensing-based
Approach

Limited real-time analysis: Data collection is not fast enough to respond to dynamic
urban changes.

Struggles with complex urban features: Difficulty in distinguishing mixed land-use
areas.

High cost of sensors and processing: Expensive equipment and technical expertise
required.

Govindu et al. (2019),
Gong et al. (2013), Liu et
al. (2018)

User-generated Data-
based Approach

Volume: Massive datasets are difficult to store, process, and analyze efficiently.
Variety: Integrating structured, semi-structured, and unstructured data from diverse
sources is challenging.

Complexity: Advanced tools are needed to analyze spatiotemporal patterns and
relationships.

Real-time Data Handling: Processing live data streams is resource-intensive and may
cause delays.

Fragmented Data: Data spread across multiple systems is hard to consolidate and
interpret effectively.

Gandomi & Haider
(2015), Assur &
Rowshankish (2024), Gil
(2022)




To develop an efficient, scalable, and integrated framework for urban land-use
classification by combining remote sensing techniques and user-generated data to
address urban growth challenges and governance needs.



Remote sensing data to more

readable unified format




Object detection

/segmentation models comparison results

Data Extraction Sources

v

v

Model

Type

Average Precision (AP)

Mean Average Precision

MAP@0.5

Average Inference Time

(seconds/image)

Google Maps

/ N\

Google Earth Pro

-

v

v

Resolution:
30cm- 15m per pixel

Resolution:
15¢cm - 1m per pixel

v

v

Over 1500 Images
Extracted
Random Selection
Process
Diverse City
Cuverage

Over 4000 Images
Extracted
Random Selection
Process
Diverse City
Cuveraf_ge

v

Captured Features:
Urban Structures, Natural
Landscapes, and Infrastructures

Mask R-CNN with ResNet-50

Mask R-CNN with ResNet-
101

Faster R-CNN with ResNet-
50

Faster R-CNN with ResNet-
101

YOLO v5

Segmentation

Segmentation
Object Detection
Object Detection

Object Detection

Precision the model can
attain at various levels of

recall

0.41

0.53
0.49
0.55

0.75

Average value of AP over all
classes at an loU threshold

value of 0.5

1

-

0.43

0.56

0.50

0.57

0.78

Time taken per image on average by the
model for processing and fulfillingthe
demands it must deliver against the

image

Average Inference Time (seconds/image)
Total Inference Time for All Images

(Seconds)
Number of Images Processed

0.058

0.064

0.049

0.054

0.02




Object detection/segmentation models comparison results
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Object detection/segmentation models comparison results
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User-generated data collection and

to convert to single format



Data Preparation and Materials
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Top 20 Proportional Representation of Categories Top 20 Underrepresented POI Categories — Discussed alongside the paragraph detailing category imbalance.

 Atotal of 48,641 points were extracted from OSM's complex mesh ( OSM accessed on 18th Dec 2023).
* Foursquare yielded 38,239 points from a massive database of user-generated places (accessed on 1st Dec 2023).

* Using the nearby search, the advanced mapping feature and APl of ArcGIS Developer contributed to our data pool with
10,642 points (ArcGIS developers accessed on 13th Dec 2023).

* In total, we acquired 97,522 POI data. Further, after various cleaning steps the we were able to use 85,328 POI data.

Source: UNEP Annual Report 2023, See, L., et al. (2016),
Wulder, M. A., & Coops, N. C. (2014).


https://www.openstreetmap.org/export#map=11/19.1121/72.9712
https://developers.arcgis.com/documentation/mapping-apis-and-services/places/nearby-search/

Collecting Text data

Mumbai Satellite
Image

200m X 200m Grid

results

YOLO V8 Model

POI Data results
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Mumbai
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Images Dataset

A
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Text data for the
city

A 4

Topic Modelling

A 4

Normalized land
use for each grid




LDA Topic Model
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Sentence Tokenization

0.84 A

0.82 A

0.80

0.78 A

Coherence score

0.76

0.74 A

0.72 A

10

Selected Topic]0 || Previous Topic || Next Topic | | Ciear Topic |

Intertopic Distance Map (via multidimensional scaling)

800 PC2

Marginal topic distribution
2%

10%

30 40 50
Num Topics
Slide to adjust relevance metric:@@) 1 | 1 | | D
A=1 00 02 04 06 08 1

Top-30 Most Salient Terms’
0 500 1,000 1500 2,000

hotel

1 reslaurant
«car parts accessories
bank

atm

travel transportation
residential building
hospital

business professional services

mobile phone store
office

bar

clathing store
chinese restaurant
gym studio

asian restaurant
indian restaurant
resort

shoe slore
miscellaneous store
bicycle store
shopping mall

bus station

lodging

parking

fuel station

snack place

mens store
fumniture home store
trade school

Overall term frequency
I Estimated term frequency within the selected topic

1. saliency(term w) = freq frequenqLJ [sum t p(t | w) * logip(t | w)ip(t})] for topics  see Chuang et. al (2012)
2. relevance(term w | topic £} = A * p(w | t) + (1 - A} * piw | tWipiw); see Sievert & Shirley (2014)

Source: Jason Chuang, 2012, Sievert & Shirley (2014)
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Topic Models comp

arison Results
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Topic Models comparison Results

Sustainable URban & REégional Analysis lab

Model Tokenization Coherence Number of Perplexity
Type Method Score Topics (Best Score)
LDA Word 0.7499 20 -27.2774
LDA N-gram 0.8164 20 -31.0310
LDA Sentence 0.8320 9 -13.9060
LSI Word 0.7546 26 N/A
LS| N-gram 0.7550 24 N/A
LSI Sentence 0.8381 9 N/A
HDP Word 0.7478 18 N/A
HDP N-gram 0.7611 26 N/A
HDP Sentence 0.8392 9 N/A
Top2Vec Word 0.5486 11 N/A
Top2Vec N-gram 0.8068 N/A
Top2Vec Sentence 0.5975 N/A
BERTopic Word 0.65 4 NA
BERTopic N-gram 0.495 13 N/A
BERTopic Sentence 0.86 7 N/A
Suir¥izil

Model Type

Heatmap of Coherence Scores by Model Type and Tokenization Method
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BERTopic Topic Model: Sentence Tokenization
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Zero-shot BERTopic Topic Model

Class = ar gmax,cCos (ererre;)

: * 110 sub classes of Atal Mission for Rejuvenation and Urban Transformation
. (AMRUT) as labels (Ministry of Urban Development, Govt. of India).

Defining zero-shot topics Zero-shot Zero-shot Zero-shot Zero-shot
Labels Topic 1 Topic 2 Topic 3 Topicn

 We experimented with a hyperparameter of clustering and tokenization (Number
of components, neighbors, and n-gram range.)

Labels Embedding

Y

* For components, we considered 2 to 8 with steps of 2.

— = = e e T | * For neighbors, we considered 10 to 130 with steps of 10.
menl BIETE B ?i ?  For the n-gram range, we considered words, bi-gram, and tri-gram.

A _Bl Documents |lwmh | i

: °
DN DN [D P
Doc?

Doc8 | ™™™ | Docn

7

Assigned ZeroshotTopics Non-assigned clustering

(et cuseringmeted * We observed that the hyperparameters, values of components, and neighbors

Topic 1 Topic 2 Topic 3 Topicn Topic X TopicY TopicZ

% % % % % % % were not affecting the model.
> 2

* Only the N-gram showed importance in the model, with a negative correlation of -

Merged BERTopic

Topic1 Topic 2 Topic 3 icn Topic X TopicY TopicZ 0 ° 9 67 .

Topic
T, —. — — . —
‘—_lj |—_lj ‘—_lj |—_lj ‘—_lj ‘—_lj ‘—_lj Topic Count :_ Name | Representation Representative_Docs

0 Restaurant | [restaurant, gastropub, diner, burger, food, c... [Fast Food Restaurant, Fast Food Restaurant, F...
1 1 3685 | Retail | [retail, retailer, supermarket, grocery, drugs... [Retail, Retail, Retail]
n_components n_neighbors ngram_range CoherenceCY 2 2 20 | Banks | [bank, banking, loans, finance, atm, , , , , ] [Bank, bank, Bank] 1 10 TO pICS
8.0 —— = . 0.84 | ; : : - : ; : . .
. - - — 3 3 1413 | Hospital [hospital, medical, medicine, doctors, laborat... [hospital, hospital, hospital] assi g ne d in t h e
4 4 1274 General Business |[professional, services, business, consultant,... [Business and Professional Services, Business ...
70 | Zero-shot model
2{5} | | —> (W|th 75%
: 105 105 1 | Electric Power Plant | [utility, company, ,,,.,.. ] [Utility Company]
55 H. H
. 106 106 1] Apartment | [condo, apartment, or, ., , . , ] [Apartment or Condo] similarity)
4.5 107 107 1 | Nursing Home l [nursing, , ,,..... ] [Nursing Home]
o 108 108 1 : Golf Course | [golf, course, , ., , .., ] [Golf Course]
35
20 109 109 1 L Race Course | [ack: s ] [Track]
25

2.0

Source: Grootendorst, M., 2022, Jason Chuang, 2012,
Sievert & Shirley (2014)
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Zero-shot BERTopic Topic Model

Mumbai Satellite 200m X 200m Grid
Image
. R I y I
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I h I ! I .
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| : | 1 : 1
YOLO V8 Model : ¥ l . -
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Results

Limitations:
Legend * Data quality inconsistency in user-generated contributions.

Predicted Landuse . . .

=it * Limited real-time updates from current data sources.
Railway Station/Railway Line

[ R::dstan
ll;/|iif:t:r;i_trir:eDBe:ilsc:einF::’:sidential Area F u t u re D i re Ct i o n S :
Slums

S i e S * Considering more user-generated data sources.

[ Sewage Treatment Plant

e S * Expand the framework to accommodate dynamic urban changes.

I Mining Site

i * Explore additional Al models for better performance in multi-class

Beach . e .
B Saren Land classification tasks.
I Forest/ Green Cover
| Farmland
Parks
Forts
[ Religious Building
Stadium
[0 Parking
B River/Stream/Drainage
[ Waterbody
[ Dam
Kilometers
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