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0 Microtidal Estuaries

Estuarine dynamics result from the
interaction of tides, storm surges, river
flows, and human activities such as
hydropower peaking.

Previous studies mainly focused on
mesotidal or macrotidal systems where
tides dominate the hydrodynamic
processes.

In microtidal estuaries, storm surges often
have a stronger short-term influence on water
levels than tides.

e Non-stationary
harmonic tidal model

Traditional harmonic analysis (HA) assumes
that tidal properties (amplitudes and phases)
are constant over time.

This method cannot capture the temporal
variability of water levels in estuaries.

NS_Tide improves HA by directly
incorporating non-stationary forcings (e.g.,
river flow, ocean tidal range) into the model.

It allows modeling both the mean water level
(stage) and tidal oscillations as functions of
these external drivers.
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flows, and human activities such as
hydropower peaking.

Previous studies mainly focused on
mesotidal or macrotidal systems where
tides dominate the hydrodynamic
processes.

In microtidal estuaries, storm surges often
have a stronger short-term influence on water
levels than tides.

b) Improve the understanding of how tides
interact with storm surges and river flow in
microtidal environments
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e Non-stationary
harmonic tidal model

Traditional harmonic analysis (HA) assumes
that tidal properties (amplitudes and phases)
are constant over time.

This method cannot capture the temporal
variability of water levels in estuaries.

NS_Tide improves HA by directly
incorporating non-stationary forcings (e.g.,
river flow, ocean tidal range) into the model.

It allows modeling both the mean water level
(stage) and tidal oscillations as functions of
these external drivers.

a) Propose a NS_Tide formulation for
microtidal estuaries




e Neretva River Estuary

Microtidal estuary, ~20 km long
estuarine zone and ~15 km long
transitional tidal river zone.

Strong seasonal river discharge
variations typical of Mediterranean
climates.
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,Old” NS_Tide model

Traditional tidal harmonic analysis (HA) :

nt) =ny + Z [.f:Jrc cos(wy 1) + 5, sin(mkf)] + e(1),
k=1

NS_Tide model (Matte et al., 2013)

Water levels decomposed into stage
(subtidal variations) and tidal-fluvial (tidal
oscillations) terms.

n(t) =S + F@) + (),

F() = ) [cx(t) cos(ayt) + s, (1) sin(w,1)]

R%*(t — 1g)
QY3 (t—1p)

S{I) = dy + nglf3(r - TQ} + as

+New"” NS_Tide model

Three new models tested for microtidal env:

sNS_Tide: uses storm surge instead of tidal
range.

gqNS_Tide: quadratic river discharge term.

HNS_Tide: combines quadratic discharge
and storm surge.

Stage Tidal-Fluvial
S(1) F(1)
NS_Tide Q2/3, RE/QA/:% Q, RZ/QI/Z
qNS_Tide Q, Q% R*/Q%3 Q, R?/Q'/?
sNS_Tide 0’3, 8S 0, SS
uNS Tide 0, 0%, SS 0, SS




a Validation
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Measured WL at all
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WL reconstructions at estuarine
stations

Spatial and temporal variability of
tides (amplitudes and phases)

Decomposed WL contributions
of river, storm surge, tides, tidal-

fluvial interactions and tidal-surge
interactions
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@ Water level
reconstruction
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@ Decomposition

Water levels along the estuary are
decomposed into time series:

River flow

Storm surge
Astronomical tides,
Tide-river interaction

Tide-surge interaction

WL (m) WL (m)

WL (m)

Total water level

Storm surge

1 ‘ | | | | [
,w“"*'f"f'uf\ﬂ “n*“uwrw~\.rmezLMMMfM»«wwﬁrﬂ,-}"wf*wmmﬁwm”“-f M‘mﬁxwf"ﬁh

Tides
0.25

0.00
~0.25{

Tide-river interaction

0.251
0.00
-0.251 1 1 i 1 i

Tide-surge interaction
0.05

-0.054 :

2016 2017 2018 2019 2020 2021




@ Contributions

Contributions to total water
levels along the estuary:

* River flow (dominant
upstream),

* Storm surge (dominant at
mouth, decreasing
upstream),

e Astronomical tides,

e Tide-river interaction
(grows upstream),

* Tide-surge interaction
(minor contribution).
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@ Key Findings @ Future work will...

New NS_Tide model available as MATLAB Investigate the adaptability and
and Python version (pascal. matte@ec.gc.ca) D effectiveness of the new NS_Tide
New formulation of non-stationary tidal —— In estuaries with more

harmonic analysis for microtidal estuaries. pronounced tide-surge-river

L . dynamics.
Decomposed contribution of river, storm
surge, tides, and their interactions. Sertibine NE_Tee vt schemness
Estimation of power peaking effects on tidal m machine learning for river
constituents in microtidal settings. T discharge reconstruction.
Apply NS_Tide for assessing
Read the full ‘_ compound flooding in microtidal
[ ————

paper here: estuaries.
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