

How does channel pattern generate unsteady bedload transport?

Newton Agham

Trevor Hoey, **Richard Williams**, Laura Quick, Richard Boothroyd, Pamela Tolentino, and Carlos Primo David

richard.williams@glasgow.ac.uk

Unsteady bedload transport

Laboratory flume, 5.5 mm gravel Dhont & Ancey, GRL, 2018

Field (Arolla), D50 = 50 mm, poorly sorted Cudden & Hoey, *ESPL*, 2003

Numerical (HECR-RAS 2D) model Devoll, Albania D50 = 19 mm; Balouchi et al., *RRA*, 2024

- Pulses occur over a range of scales
- Described by skewed frequency distributions
- Causal mechanisms at all scales:
 - turbulence
 - grain sorting
 - bedform dynamics
 - reach-scale stress variability
 - advectiondiffusion of sediment inputs

Hypothesis: channel pattern controls bedload variability

- Bislak River, N Luzon, the Philippines
- Four adjacent reaches from confined meandering to unconfined deltaic
- Seasonal flow (Dry season Nov March; wet season peak June August)

Summary methodology

- 0.5m resolution DEM
- HEC-RAS predictions of hydraulics and bedload transport (Q₁₀₀ event)
- Bedload uses constant grain-size distribution and generalised Meyer-Peter and Müller equation
- Statistics extracted for each of the 4 reaches

Bedload transport locations

- Areas with $\tau > \tau_{c}$ shown
- Coloured areas are for Q_{10}, Q_{50}, Q_{100}
- Proportion of bed with active transport (ABTA) stable with increasing Q
- ABTA decreases as flow spreads (74% to 10% for Q₁₀₀)

Frequency distributions of bedload

- Mean, Median and s.d. all decrease downstream
- Skew low in confined meandering reach
- Results change little for different *Q* values
- Also change little if D₅₀ is varied

Cumulative frequency distributions

- Data converted to cumulative form
- Dashed line for bedload in proportion to discharge in all cells
- More concave curves show greater spatial variability in bedload
- Variability increases as slope falls and braiding index rises downstream
- What does this imply for river channel change and temporal dynamics?

Boothroyd et al, 2025, Nature Communications doi.org/10.1038/s41467-025-58427-9

Locational probabilities reveal hotspots of change

9

g

Spatially heterogeneous nature of river planform mobility

Boothroyd et al, 2025, Nature Communications doi.org/10.1038/s41467-025-58427-9

Conclusions

- Reach-scale hydraulic properties determine reach-scale distributions of bedload transport
- Less confined, braided and deltaic patterns show much greater spatial variability than more confined meandering and wandering reaches
- Spatially variable bedload transport controls morphological dynamism, which we can now assess at whole-catchment scales
- Assuming that temporally unsteady bedload follows from spatial heterogeneity, braided reaches will experience more variable transport through time, although at lower unit rates, than meandering reaches
- These results have theoretical implications, but also can inform how rivers are managed

 Universit of Glasgov

UNIVERSITY OF

NERC

Newton Agham

How does channel pattern generate unsteady bedload transport?

Newton Agham

Trevor Hoey, Richard Williams, Laura Quick, Richard Boothroyd, Pamela Tolentino, and Carlos Primo David

richard.williams@glasgow.ac.uk

Braided river adjustment – Bucao River

Meandering river adjustment – Cagayan River

Wandering gravel bed river adjustment – Abulug River

