Microbial phosphorus processing in a gradient of agricultural soil development following mining activity Nelly S. Raymond¹, Federica Tamburini², Astrid Oberson², Rüdiger Reichel³, Carsten W. Müller⁴

- ¹ Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
- ² Institute of Agricultural Sciences, ETH Zurich, Eschikon 33, 8315, Lindau, Switzerland
- ³ Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), 52425 Jülich, Germany
- ⁴ Institute of Ecology, Chair of Soil Science, Technische Universitaet Berlin, Ernst-Reuter-Platz 1, Berlin, 10587, Germany

INTRODUCTION

- Microorganisms are the key driver of soil phosphorus (P) cycling. ullet
- Promoting their role in agricultural systems to support crop production to shift reliance away from non-renewable mineral P inputs. lacksquare
- But, poor understanding of how soil P status, soil microorganisms, and soil properties interactively determine P supply to plants. ullet
- Main objective: characterizing the soil P × soil microorganisms × soil properties interaction promoting microbial P cycling along a lacksquareunique managed gradient of soil development.

METHODS

- 1. Experimental site: Inden mine (RWE), Germany (Fig. 1).
- 2. Collected soils: soils restored from 2022 year 0 (Phase I), 2018 – year 5 – (Phase II), 1964 – year 59 (Phase III) and an original soil undisturbed.
- 3. Soil properties: range of physico-chemical soil properties, Hedley P fractionation, ion-exchange kinetics (IEK).
- 4. Biological P cycling: soil incubations with ¹⁸Oenriched water and ³³P labelling.

RESULTS

- Decrease in pH and CaCO₃ over time (P < 0.0001) (Table 1). \sum
- Increase in SOC, oxalate-Fe & Al, microbial biomass C & 🗳 320 ulletP, Ptot and P exchangeability ($E_{1\min}$) over time (P < 0.05) (Table 1).

Lignite extraction Year 0: Mix of soil and loess + basal mineral fertiliser

FIGURE **1:** Inden mine soil recultivation

Year 2-3: permanent Year 4 to 7: cereal Alfalfa + biomass mulching

crops + initial green waste compost (30 t ha⁻¹) + mineral fertiliser y⁻¹

Year 5-...: Farmer managed (sugar beetwinter wheat crop rotation) + organic and mineral fertilisation

- Decrease in the relative size of the most labile-P pools $\frac{2}{n}$ 100 (Resin-, NaHCO₃-, and NaOH-) between year 0 and 5. Then, proportion of the most labile-P pools increased again in Phase III. The original soil had the greatest proportion of more labile-P pools (±50%) (Fig. 2).
- Decrease in P reactivity and turnover time of P in soil **solution** (P < 0.0001).

TABLE 1: Selected soil properties along the Inden mine recultivation gradient

Soil properties	year Phase I	year 5 Phase II	year 59 Phase III	Original soil
рН _{Н2О}	8.0±0.1	7.9±0.1	7.6±0.1	7.3±0.1
SOC (g kg ⁻¹)	0.54±0.04	0.51±0.17	1.24±0.07	1.62±0.05
CaCO ₃ (%)	35.9±3.2	49.0±3.1	7.8±4.5	6.7±2.7
Oxalate-Fe (g kg ⁻¹)	1.46±0.11	1.21±0.06	2.08±0.28	2.75±0.19
Oxalate-Al (g kg ⁻¹)	0.74±0.04	0.69±0.02	0.81±0.05	0.75±0.03
Mic-C (mg kg ⁻¹)	140±42	59±22	263±56	368±65

FIGURE 2: Sequential fractions of Resin-, NaHCO₃-, NaOH- and HCI- extractable inorganic (Pi) and organic P (Po) (n=5; error bar = standard deviation)

- Cumulative gross P mobilization over 15 days could not be determined in years 0 & 5 and remained greater in the original soil.
- The $\delta^{18}O-P_{resin}$ and $\delta^{18}O-P_{hex}$ of the OR soil increased by several permil during the incubation (P < 0.0001). In the 1964 only a significant increase was observed in the $\delta^{18}O-P_{resin}$ (P < 0.0001). No significant changes were detected for the 2022 soil (P > 0.05).

DISCUSSION & CONCLUSION

• Soil P content and exchangeability regained the original soil

Mic-P (mg kg ⁻¹)	6±3	3±1.5	17±6	23±9
Ptot _{Aqua} Regia	442±24	412±10	698±23	537±38
P reactivity ((r(1)/R) - IEK)	0.25±0.06	0.21±0.03	0.47±0.04	0.61±0.03
E _{1min} (mg kg ⁻¹) (IEK)	3.2±1.2	1.0±0.1	12.4±1.9	9.9±2.5
Solution P turnover (Km (min ⁻¹) - IEK)	46.1±29.5	36.4±15.0	8.0±3.5	2.4±0.7
Cumulative gross P mob (15 days)	ND	ND	22.0±8.6	31.4±6.0

levels.

- Microbial P processing is highly correlated with total soil organic C and did not reach the original soil rates.
- Difficulties to measure gross P mobilization in soils of year 0 & 5 because of the high $CaCO_3$ and very soil solution P concentrations.
- Despite measured P levels similar or surpassing those of the original soil in the oldest soils, biologically-driven P cycling has not fully recovered more than 50 years after soil re-cultivation.

Acknowledgments: Nelly S. Raymond acknowledges the European Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No MSCA-HE-2021 No. 101064654 for supporting the research and the participation to EGU25

