Investigating small-scale vertical concentration gradients of formaldehyde and glyoxal above
the canopy at the Amazon Tall Tower Observatory (ATTO) using two MAX-DOAS instruments
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A. MEASUREMENT SITE AND PRINCIPLE B. CHARACTERISTICS OF TRACE GAS ABUNDANCES E. PRECURSOR GRADIENTS
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C. COMPARISON OF THE INSTRUMENTS D. SEASONAL CYCLES OF VERTICAL GRADIENTS F. CONCLUSION AND OUTLOOK
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