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Abstract
Accurate evaluation of cloud microphysical variables is essential for improving cloud parameterization and weather fore-
casting, yet obtaining high-resolution, spatially and temporally extensive data remains a challenge due to the limitations of 
in-situ measurements. The present study tries to address this gap by assessing existing equations for estimating vertically 
integrated liquid water content (VIL, kg/m2) from liquid water content (LWC, g/m3) using C-band dual-polarized Doppler 
Weather Radar (DWR) data from the India Meteorological Department (IMD) Jaipur station over 78 summer monsoon days 
in 2020–2022. A long-term climatological analysis (2003–2023) of total column cloud liquid water (TCCLW, kg/m2) from 
ERA5, liquid water cloud water content (LWCP, kg/m2) from MODIS, and rainfall data from IMD, IMERG, and GPCP data-
sets has been performed. VIL is computed as the vertical integral of LWC across atmospheric layers using four reflectivity-
LWC (Z-LWC) relationships and one reflectivity-differential reflectivity (Z, ZDR-LWC) relationship from existing literature. 
The performance of empirically radar derived VIL has been evaluated by comparing with satellite-derived (MODIS) cloud 
liquid water path (LWP, kg/m2) and TCCLW. The results show that VIL values increase with rainfall intensity, leading to 
higher estimation errors. Among all relations tested, the hybrid equation (which includes Z and ZDR) consistently demon-
strated superior performance, particularly during high-intensity rainfall events, with lower root mean square error (RMSE) 
and mean absolute error (MAE) values. The method also captured more detailed spatial patterns of liquid water distribu-
tion with reduced bias, making it the most reliable estimator. Despite limitations such as beam blockage and slight spatial 
shifts due to interpolation, the current study may provide a foundation for improving real-time precipitation forecasts and 
understanding cloud microphysics by incorporating polarimetric radar products. The future work may aim at refining the 
methodology through enhanced cloud-type-specific estimators.

1 Introduction

Clouds significantly impact various aspects of the Earth sys-
tem such as solar radiation, energy fluxes, the hydrological 
cycle, and freshwater distribution, and their study is cru-
cial for modern meteorology and weather forecasting (Ste-
phens et al. 2015; Pinsky and Khain 2018). The way cloud 

microphysical processes are represented in cloud parame-
terization schemes can greatly affect cloud-climate feedback 
in global climate models (Bodas-Salcedo et al. 2019). As 
clearly stated by Randall et al. (2003), cloud microphysics 
represents one important part of the broader cloud param-
eterization challenge, which has been called “a problem that 
refuses to die.” While understanding the clouds and their 
processes, one of the key factors of interest is vertically inte-
grated liquid water content (VIL), typically measured in kg/
m2. VIL is a measure of the total amount of liquid water con-
tained in clouds within a column of the atmosphere extend-
ing from the ground to the top of the cloud layer, which 
determines the distribution and amount of liquid water in 
clouds (Liou and Ou 1989; Seo et al. 2020).

VIL has proven to be a highly useful parameter in various 
aspects of meteorology, such as severe thunderstorm warn-
ings regardless of air mass characteristics and geographic 
location, radar-rainfall estimation, effective identification of 
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hailstorms and estimating errors in artificial precipitation 
suppression operations, and providing detailed information 
on convective precipitation bands, aiding in nowcasting 
and predicting precipitation development and movement 
(Amburn and Wolf 1997; Witt et al. 1998; Seo et al. 2020; 
Islam and Rasmussen 2008; Skripniková and Řezáčová 
2014). VIL also helps in tackling the challenge of classifica-
tion of precipitation types beneficial to meteorology research 
and weather forecasting (Yang et al. 2013, 2019). Further-
more, integrating VIL data into numerical models shows 
promising results. Georgakakos (2000) created a method 
to improve rain forecasts by assimilating VIL data from 
weather radar and surface rainfall measurements in weather 
models. The above study shows a substantial reduction in 
the model-predicted state variance for the grid column with 
observations. Recently, Lai et al. (2020) proposed a scheme 
for getting pseudo water vapor (qv) and pseudo-potential 
temperature (θ) observations based on VIL, whose assimi-
lation into the Weather Research and Forecasting (WRF) 
model resulted in improved composite reflectivity and pre-
cipitation forecasts. VIL, derived from X-band polarimetric 
weather, can also be used to predict rainfall amounts using a 
combination of Z and differential phase (KDP) (Hirano and 
Maki 2010). These ongoing studies highlight the need for a 
more in-depth examination of this parameter at a regional 
scale.

VIL is typically derived from the vertical integration of 
radar reflectivity observations (Greene and Clark 1972). 
Matrosov (2009) estimated the vertical integral of cloud 
ice, liquid, and mean rain rate in stratiform precipitation 
with lesser uncertainties, where radar and auxiliary data 
including a ground-based disdrometer were used. Accord-
ing to Li et al. (2015), cloud water content profile in warm 
rains can be well determined by cloud water path (CWP), 
cloud top height (CTH), and cloud bottom height (CBH). 
Algorithms utilizing these parameters demonstrated good 
performance in WRF-ARW model simulations. Gascón et al. 
(2015) analysed a convective winter event over the Iberian 
Peninsula using a multichannel microwave radiometer and 
retrieved the vertical profile of LWC by determining cloud 
boundaries from thermodynamic profiles using a theoreti-
cal cloud model. Lyras et al. (2017) proposed a stochastic 
dynamic model for the generation of VIL fields to predict 
the impact of cloud impairments on satellite links. Zheng 
et al. (2019) employed a method that uses both X-band rain 
radar and Ka-band cloud radar together in vertical detec-
tion mode to estimate VIL. This approach, unlike traditional 
methods that use volume scan data, improved the accuracy 
of VIL calculations. When compared with Global Precipi-
tation Measurement (GPM) data, their method showed bet-
ter results in estimating VIL. Seo et al. (2020) used radar 
reflectivity data and temperature sounding from an atmos-
pheric sounding to construct a polar-based reference map of 

reflectivity that contains reflectivity observations below the 
melting layer to estimate VIL, which helped to reduce bright 
band (BB) effects in quantitative precipitation estimation 
(QPE). Schulte et al. (2024) used a random forest algorithm 
to predict cloud LWC from combined CloudSat/CALIPSO 
observations; their study observed a daytime oceanic warm 
cloud liquid increase of about five-fold compared to obser-
vation. Even though different estimation methods exist, 
the primary challenges in estimating VIL primarily stem 
from a lack of continuous and global observations. Stud-
ies using microwave radiometers and disdrometers benefit 
from scientific understanding but are limited by high costs, 
complexity, and restricted spatial coverage, reducing their 
impact on operational forecasting (Saunders 2018; Tapiador 
et al. 2017; Angulo-Martínez et al. 2018). The challenges 
of collecting continuous data from aircraft arise from the 
cost and limited duration of observations (Aydin and Singh 
2004; Yum et al. 2004). Zhong et al. (2011) discussed the 
limitations of meteorological satellites and ceilometers in 
observing the 3D shape of clouds and identifying their inter-
nal characteristics since they primarily direct the upper and 
lower boundaries of the cloud.

Bulk microphysics schemes (BMSs) are commonly 
adopted in NWP models and are essential for accurate fore-
casting of precipitation, cyclone track, and intensity. (Fovell 
and Su 2007; Pattnaik et al. 2011). Yang et al. (2024) assimi-
lated radar reflectivity using a full-hydrometeor scheme with 
WSM6 in WRF 4D-Var, showing improved model spin-up 
and enhanced 0–3 h accumulated precipitation forecasts. 
Wang et al. (2024) demonstrated that directly assimilating 
radar reflectivity using a two-moment microphysics scheme 
effectively adjusted hydrometeors and large-scale variables, 
particularly temperature and vertical velocity, in a typhoon 
landfall study in China. In a developing country like India, 
ground measurement of precipitation hydrometeors like 
rain, snow, or hail are not only challenging but also costly. 
However, effective use of 3D observations from DWR can 
provide valuable insights about hydrometeors.

Widener and Mead (2004) detailed the use of W-band 
atmospheric radiation measurement cloud radars for high-
resolution cloud data collection over long periods. Moran 
et al. (1998) documented the use of vertically pointing Ka-
band millimetre-wave cloud radars for collecting cloud data. 
Integrating radar and satellite data is crucial for regional 
precipitation forecasting due to their high resolution and 
extensive coverage. Radar, sensitive to higher moments 
of the drop size distribution (DSD), and satellites, captur-
ing lower moments, together offer essential microphysical 
insights for accurate BMS evaluation. Mohan et al. (2024) 
evaluated WRF cloud microphysics schemes for tropical 
cyclone Fani using wind profiler radar and multi-satellite 
data, finding that scheme variations mainly influenced inten-
sity while having a lesser impact on track predictions. Roh 
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et al. (2024) evaluated a global non-hydrostatic model over 
Japan using a ground-based Cloud Profiling Radar similar 
to EarthCARE’s, assessing microphysics schemes via Dop-
pler velocity. Results highlight the significant impact of 
microphysics choice on hydrometeor phase separation and 
terminal velocities.

Therefore, the present study utilizes the dual-polarimetric 
DWR together with satellite and reanalysis datasets for cloud 
microphysical parameter estimation. This enables the effec-
tive use of dual- polarimetric and base products of the DWR. 
The primary aim of the study is to understand the capability 
of existing empirical equations in retrieving VIL from DWR 
using LWC equations. This has been estimated using varia-
bles such as ZDR and reflectivity. Various empirical relation-
ships for estimating LWC using these variables are discussed 
in subsequent sections. Each relationship is applied to calcu-
late VIL and evaluated through qualitative and quantitative 
analysis; subsequently, the best among existing methods has 
been identified for further examination in future work. The 
present study is the first of its kind over the Indian domain.

The study is organized into different sections. Section 2 
includes an explanation of the data and methodology used in 
this work and provides an overview of the various equations 
employed. Section 3 discusses the long-term analysis of total 
column cloud liquid water (kg/m2) (hereafter TCCLW) and 
liquid water cloud water path (kg/m2) (hereafter LWCP) 
along with different sets of rainfall data, and qualitative and 
quantitative evaluation of retrieved VIL from each equation 
is added. Finally, in Section 4, a brief overview of the study 
is given along with a discussion of the major outcomes.

2  Data and methodology

2.1  Data

The present study focuses on the evaluation of existing VIL 
estimation relations for the selected days of the summer 
monsoon (hereafter SM) season, June, July, August, and 
September (hereafter JJAS) for the years 2020, 2021, and 
2022. To achieve the research objective, DWR data, reanaly-
sis data, satellite data and gridded rainfall have been used.

2.1.1  Doppler Weather Radar

This study utilized DWR data from the IMD, Jaipur 
(26.8207°N, 75.8157°E), which is a C-band dual polari-
metric DWR. The IMD typically collects radar data using 
two different coverage patterns. The first is long-range 
PPIs, referred to as Type-C (500 km radius), which usually 
consists of 1 to 3 sweeps. The second is short-range PPIs, 
known as Type-B, which includes 5 to 10 different sweeps. 
In this study, we utilized the Type-B (250 km radius) pattern 

radar data, which has 10 different sweeps taken at 10 differ-
ent elevation angles, 360 rays (1º resolution of azimuths) 
and 999 gates per sweep. Being an operational radar, it was 
calibrated for system gain and incorporated noise level cor-
rections and offset adjustments to rectify imbalances in the 
receiver channels. To enhance data quality, signal thresholds 
were applied to eliminate clutter and weak signals, while 
a statistical calibration fit ensured measurement consist-
ency (George et al. 2011). Additionally, sun calibration, 
frequency adjustments, and transmitted power corrections 
were implemented (Rinehart 2004). Thus, the radar appears 
well-calibrated. To keep biases in quantitative precipitation 
estimates under 20%, a sensitivity of 0.1–0.2 dB for ZDR 
and ± 1 dB to ± 2 dB for Z is expected from an operational 
radar, making the uncertainty in the VIL measurements least 
(Seliga and Bringi 1976; Bringi and Chandrasekar 2001; 
Frech and Hubbert 2020). We use reflectivity (Z, dBZ) and 
differential reflectivity (ZDR, dB) for the study. Reflectivity 
refers to the measure of the amount of transmitted radar sig-
nal that is reflected to the radar receiver by scatterers. ZDR 
is the logarithmic ratio between the backscattered power at 
horizontal and vertical polarizations, which is close to 0 dB 
for isotropic scatterers and shows larger positive values for 
oblate particles. The specifications of radar and details of 
radar data are given in Table 1.

2.1.2  ERA5 data

Data from the Reanalysis 5th Generation dataset (ERA5) 
(Hersbach et al. 2020) of the European Centre for Medium-
Range Weather Forecast (ECMWF), which includes a com-
prehensive record of the global atmosphere, land surface, 
and ocean waves from 1950 onward with global cover-
age at hourly and monthly time scales, is used to analyse 

Table 1  Specification and details of IMD Jaipur Doppler Weather 
Radar and corresponding DWR data

Conventions CF/Radial
Coordinates Polar
Number of sweeps 10
Scan types B and C
Wavelength 5 cm
Frequency 5625 MHz
Altitude 399 m from sea level
Range 250 km
Sweep angles (o) 0.5, 1, 2, 3, 4.5, 6, 9, 12, 16, 21
Variables available Reflectivity (dBZ)

Radial Velocity (m/s)
Spectrum Width(m/s)
Differential Reflectivity (dB)
Echo classification (Unitless)

Data format NetCDF
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the climatology and assess the retrieved VIL. The spatial 
resolution of the hourly single-level TCCLW (kg/m2) is 
0.25° × 0.25°. The amount of liquid water in cloud droplets 
across a column that runs from the Earth's surface to the 
top of the atmosphere is represented by this parameter. It 
is based on a global reanalysis model that represents liq-
uid water as an area-averaged value over a model grid box, 
simplifying cloud microphysics. Additionally, ERA5 hourly 
precipitation type data, which describes the type of precipi-
tation with a spatial precision of 0.25° × 0.25°, is used for 
additional analysis.

2.1.3  MODIS datasets

This study has made use of three distinct sets of Moder-
ate Resolution Imaging Spectroradiometer (MODIS) data. 
The Afternoon Constellation (A-train) of the MODIS on 
board the Aqua and Terra satellites provided the satel-
lite observations used in this investigation (Platnick et al. 
2017). Cloud water path (kg/m2) and cloud phase have 
been taken from MODIS available at a spatial resolution 
of 1 km. These data were obtained from the collection 
6.1, level 2 Atmosphere, Land (ArchiveSet 61) data prod-
uct. On one of the chosen days (June 25, 2020), when 
the MODIS swath and the entire radar sector overlapped, 
this MODIS data was taken into consideration. This was 
carried out to illustrate the procedures followed in this 
investigation. This choice was made in an effort to balance 
radar data accessibility.

The long-term average is examined using the gridded 
LWCP (kg/m2) from the MODIS Aqua and Terra satellites 
for the years 2003–2023 that were acquired via the Geo-
spatial Interactive Online Visualization ANd aNalysis Infra-
structure (GIOVANNI).

2.1.4  Rainfall datasets

Present study includes rainfall data from three different 
sources at different spatial resolution, which have been 
utilized for long-term spatial analysis. With 135 longitude 
locations (66.5E to 100.0E) and 129 latitude points (6.5N to 
38.5N), the IMD's new high spatial resolution (0.25º × 0.25º) 
long period (1901–2022) Daily Gridded Rainfall Data Set 
(Pai et al. 2014) covers the entire landmass of India. Another 
multi-satellite merged high resolution rainfall product (Huff-
man et al. 2014), IMERG (Integrated Multi-satellitE Retri-
vals for Global Precipitation Measurement) provides daily 
global rainfall at 10 km. Additionally, the 1º × 1º spatial 
resolution GPCP (Global Precipitation Climatology Pro-
ject) Monthly Analysis Product (Adler et al. 2003) was used, 
which combined data from several satellite sources covering 
both land and ocean and was augmented by gauge observa-
tions over land areas.

2.2  Methodology

The PyScanCf (Syed et al. 2024) Python package has been 
used for processing IMD weather radar data. The first step is 
to integrate the obtained multi-sweep radar data into conven-
tional polar volumes. Numerous pollutants, primarily from 
biological and ground clutter, can affect the DWR data. The 
remaining ground clutter was eliminated using the Gabella 
clutter filter (Gabella and Notarpietro 2002), a successful 
two-part identification algorithm based on texture analysis 
that uses minimum echo area and echo continuity criteria to 
distinguish between meteorological and non-meteorological 
echoes. Additionally, radar data was corrected for attenuation 
gate-by-gate using the iterative method suggested by Jacobi 
and Heistermann (2016) and Kraemer and Verworn (2008).

The Python module Wradlib contains these algorithms 
(Heistermann et al. 2013). Additionally, PyART (Helmus 
and Collis 2016), an open-source Python library made spe-
cifically for working with weather radar data, is used to trans-
form the analyzed CfRadial files to gridded format. Gridding 
was done using the adaptive Barnes scheme (Barnes 1964), 
an interpolation scheme in which values at grid points are 
estimated using a weighted average technique depending on 
the distances to surrounding radar data points. The radar 
data is gridded to a spatial resolution of 2 km and 40 levels 
vertically up to 20 km height, providing 500 m of vertical 
spacing. The processing of radar data has been depicted in 
a flow diagram, displayed in Fig. 1. A long-term time aver-
age spatial analysis of the TCCLW and LWCP datasets was 
then conducted in conjunction with rainfall data to obtain a 
better understanding of the spatial characteristics of liquid 
water content over the study domain during SM from 2003 
to 2023. Events were chosen for the present study based on 
three criteria: days with area-weighted average rainfall of 
at least 8.3 mm, days with area-weighted average rainfall 
exceeding 62.5 mm, and more than 50% of the grid showing 
rainfall over 2.5 mm within the 250 km radius domain of 
IMD Jaipur radar range. In this study, 78 similar instances 
that met these criteria were examined. Out of 78 days, 18 are 
from 2020, 28 are from 2021, and 38 are from 2022 during 
SM months. Table 2 lists the available radar data.

2.2.1  VIL estimation

To estimate VIL the process begins by filtering out radar 
reflectivity values less than 20 dBZ. This threshold was 
selected based on initial observations of persistent clutter 
and insights from previous studies, which indicate that non-
meteorological echoes typically fall below this value (Nes-
bitt et al. 2006 and Cifelli et al. 2007). Further, the maxi-
mum height to which the system was extended was identified 
using maximum reflectivity (MaxZ) analysis, which display 
the vertical height, cross section and maximum reflectivity 
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from all levels (refer Fig. 8b for an example of MaxZ plot). 
This height corresponds to the number of levels used in the 
integration at each time. Five sets of LWC equations were 
used in this study, refer to Table 3. Proposed by Greene 
and Clark (1972), Eq. 2.1 establishes a linear relationship 
between the logarithm of LWC and horizontal radar reflec-
tivity. Carlin et al. (2016) introduced Eq. 2.2 as an alter-
native linear model for estimating LWC from Z, reflecting 
slight variations in empirical coefficients derived from Ger-
man DSDs and Eq. 2.3 is linear and Eq. 2.4 is the quadratic 
fit of the same. These equations are Z- LWC based equations 
where Eq. 2.5 is the bivariate linear estimator introduced 
by Carlin et al. (2016) which provides a method to estimate 
LWC using Z and ZDR.

For uniformly spaced vertical levels at 500 m intervals, 
the calculation of VIL involves summing the LWC values at 
each level and then multiplying by the vertical height inter-
val using Eq. 1. This method ensures an accurate represen-
tation of the total liquid water content per unit area, fully 
accounting for the vertical extent of the cloud column.

where i is the number of levels, LWC is the liquid water 
content of each level and h is the thickness of each vertical 
layer. VIL is first computed for each hour and then converted 
to daily by averaging the hourly data. Figure 2 shows a flow 
diagram for VIL computation and analysis. To assess the 

(1)VIL =
∑n

i=1
LWC

i
.∇h

Fig. 1  Flow chart of  IMD- 
Jaipur DWR data pre-processing

Table 2  DWR data received from IMD for summer monsoon period 
(JJAS) for the years 2020, 2021 and 2022

Year Fraction missing data (%) Longest 
outage 
(days)

2020 47.66 36
2021 19.65 2
2022 33.55 13

Table 3  List of Empirical formula used to estimate LWC from DWR

Equation Number
2.1 log(LWC(Z)) = 0.057Z − 2.46
2.2 log(LWC(Z)) = 0.066Z − 2.80
2.3 log(LWC(Z)) = 0.050Z − 2.18
2.4 log(LWC(Z)) =  − 0.0005Z2 + 0.084Z − 2.77
2.5 log(LWC(Z, ZDR)) = 0.058Z − 0.118ZDR − 2.36
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quality of the estimators, several metrics are utilised. The 
Pearson Correlation Coefficient (r) gauges the strength and 
direction of linear relationships between variables, Mean 
Absolute Error (MAE) quantifies the average magnitude of 
prediction errors, offering a measure of overall accuracy, 
Root Mean Squared Error (RMSE) provides a standardised 
measure of these errors, giving more weight to larger devia-
tions, Standard deviation (STD) reflects how much indi-
vidual data points differ from the mean, highlighting the 
variability within the dataset, Mean Bias Deviation (MBD) 
reveals the average bias in predictions, indicating how much 
predicted values deviate from observed values and finally, 
Bivariate Moran's I (BMI) evaluates the spatial correlation 
between observed and retrieved values, uncovering spatial 
patterns that are crucial for understanding regional depend-
encies (Lee 2001) were employed.

3  Results and discussions

3.1  Long‑term average of LWCP and TCCLW 
during the summer monsoon months 
of the years 2003 to 2023

The spatial distribution of average LWCP and average 
TCCLW for the SM months of the years 2003 to 2023 is 
given in Fig. 3a and b, respectively. This section provides 
an overview of LWCP and TCCLW over the domain, as 

this is the first study of its kind in this region. The goal is 
to acquaint readers with the range and spatial distribution 
of these variables before proceeding with the estimation 
process. The LWCP has a higher value ranging more than 
0.07 kg/m2 in the south and southeastern part and the trend 
decreases towards the western and northwestern part of the 
region making an approximate diagonal spatial pattern of 
lower value on the left and higher on the right. TCCLW 
also shows a similar diagonal spatial pattern with values 
ranging from 0.1 to 0.14 kg/m2 in the south and south-
western part of the region with a much higher value than 
0.14 kg/m2 in between 76.5oE and 77.5oE, the southeastern 
part adjoining and including Madhya Pradesh (MP). The 
averaged rainfall pattern of JJAS for the same year range 
from IMD gridded, IMERG and GPCP is shown in Fig. 4a, 
b and c respectively. This also shows a northeastward 
diagonal decrease as same as the TCCLW and LWCP. The 
much higher value of rainfall (> 8 mm/day) is seen in the 
southeastern region of the range, that is the region adjoin-
ing the neighboring state of MP. These are the regions with 
higher values of LWCP and TCCLW are observed.

To gain a deeper understanding of spatial patterns of the 
monthly variations, LWCP and TCCLW alongside average 
rainfall during the SM months are studied. In June the LWCP 
values are generally below 0.15 kg/m2 (Fig. 5a). Only the cen-
tral part and southeastern part show the values more than this. 
TCCLW in June (Fig. 6a) shows an overall value of less than 
0.13 kg/m2 with slightly higher in the southeastern region. 

Fig. 2  A flow diagram for VIL 
computation and analysis
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Rainfall during June (Fig. 7a, b, c) shows a higher value in 
the southeastern part where the LWCP and TCCLW are also 
high. This aligns with the timing of the SM's arrival in the 
area which occurs by the end of June and is fully established 
by July (Ali et al. 2005) where it progresses from the south-
eastern part of the state. In July (Fig. 5b), the LWCP plots 
show that most of the region has values exceeding 0.18 kg/m2 
whereas the northwestern part has very less value compared 
to other regions. TCCLW in July (Fig. 6b) has a maximum 
value of more than 0.24 kg/m2 in the southeastern part and 
the northwestern part has a lower value. From the rainfall 
plot of July (Fig. 7d, e, f) it is observed that rain has covered 
most of the region with rainfall of more than 6 mm/day except 
the northwestern part where the LWCP and TCCLW are also 
less. A similar trend is observed for LWCP and TCCLW in 
August also (Figs. 5c and 6c respectively) with the south and 
southeastern parts having higher values. LWCP values in the 
south and central parts have increased to more than 0.21 kg/
m2. Rainfall over this region also increased during this month 
(Fig. 7g, h, i). LWCP and TCCLW is decreased in Septem-
ber (Figs. 5d and 6d respectively) as the rainfall decreases 

and retreats during this month (Fig. 7j, k, l). The central and 
northwestern parts have LWCP and TCCLW values less than 
0.15 kg/m2. Rainfall has also been reduced to less than 6 mm/
day in those regions. The northwestern part still has less rain-
fall and less LWCP and TCCLW in this month as well.

LWCP and TCCLW during the SM months show a clear 
pattern of higher values in the south and southeastern part 
in the months of July and August which are the months 
when the rainfall reaches, peaks and covers the entire state. 
While in the months of June and September the values are 
lower in the north and northwestern part of the region and 
comparatively higher in the south and southeastern making 
diagonal variation visible. These lower and higher values cor-
respond to the early days of arrival and withdrawal timings 
of the SM. Deep convective and nimbostratus clouds being 
dominant during the southwest monsoon and western dis-
turbances (Johansson et al. 2015; Kumar et al. 2019), these 
thicker clouds result in larger cloud liquid water and rain 
liquid water, causing greater rain rate during the monsoon in 
China (Zhang et al. 2020). These deep convective clouds are 
characterized by extensive vertical heights, reaching up to 

Fig. 3  (a) Average LWCP (kg/
m2) from MODIS (b) Average 
TCCLW (kg/m2) from ERA 
5 during JJAS for the period 
of 2003–2023 over a region 
centering at DWR-Jaipur loca-
tion (24N-30N; 73E-79E)

Fig. 4  Average Rainfall (mm/day) from (a) IMD gridded (b) IMERG and (c) GPCP during JJAS for the period of 2003–2023 over a region cen-
tering at DWR-Jaipur location (24N-30N; 73E-79E)
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Fig. 5  Monthly average LWCP 
(kg/m2) from MODIS for (a) 
June (b) July (c) August and 
(d) September for the period 
of 2003 – 2023 over a region 
centering at DWR-Jaipur loca-
tion (24N-30N; 73E-79E)

Fig. 6  Monthly average 
TCCLW (kg/m2) from ERA 5 
on (a) June (b) July (c) August 
and (d) September for the 
period 2003–2023 over a region 
centering at DWR-Jaipur loca-
tion (24N-30N; 73E-79E)
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14 km, and significant cloud water and ice content (Rajeevan 
et al. 2013). This could be the reason for elevated values of 
LWCP and TCCLW during the months of July and August. 
The increase in LWCP and TCCLW in the diagonal region is 

likely due to enhanced cloud formation caused by orographic 
lifting over the Aravalli Range, which is the dominant moun-
tain range in Rajasthan that roughly divides the state into two 
halves diagonally (Roy and Jakhar 2002).

Fig. 7  Monthly average rainfall(mm) for from IMD gridded, IMERGE and GPCP over Jaipur radar range during June (a-c), July (d-f), August 
(g-i), September (j-l) respectively for the period 2003 to 2023 over a region centering at DWR-Jaipur location (24N-30N; 73E-79E)
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3.2  Evaluation of LWC equations

To begin the evaluation, we will first analyse the VIL for 25 
June 2020, focusing particularly on the mature stage hour of 
the system (13:00 UTC), where each equation will undergo 
detailed analysis. Then, the analysis is conducted for the 
entire day and is validated against observations and other 
parameters. After that, the detailed statistical analysis of VIL 
for all other selected days (daily analysis) is carried out. VIL 
is compared with TCCLW, both of which quantify the total 
liquid water content in cloud droplets across a vertical col-
umn from the Earth's surface to the top of the atmosphere, 
measured in kg/m2.

3.2.1  During mature stage

The synoptic conditions during the mature stage of the sys-
tem on 25 June 2020 13:00 UTC were studied and VIL was 
estimated and analysed for this hour. On 25 June 2020, the 
Jaipur radar region witnessed a system of convective rain-
bearing clouds leading to widespread rainfall and destruc-
tion, with 13:00 UTC marking the hour when the system 
matured. The INSAT-3D satellite brightness temperature (K) 
(Fig. 8a), radar reflectivity plots of maximum reflectivity 
(dBZ) (Fig. 8b), 24 h total accumulated rainfall (Fig. 8c) 
and evolution of reflectivity during the maturing and mature 
stage of the event (Fig. 9), were examined to assess the syn-
optic condition of the event.

From Fig. 8a the cloud top brightness temperature (K) for 
12 15 UTC during the maturing stage shows values of 200 K 
or lower in all clusters of clouds including the bigger system 
of clouds covering Nagaur region indicating intense convec-
tion. Also, two smaller clusters over Tonk and Krauli (mid-
dle and eastern parts) which further get grouped together to 
form a single cell and rain show values of 200 K or lower. 
At the same time, the MaxZ plots (Fig. 8b) show reflec-
tivity values higher than 30dBZ around the smaller cluster 

and reflectivity values more than 40dBZ inside the core of 
the cloud system. Vertical growth of the cloud over 15 km 
and some reaching up to the tropopause is seen around the 
core of the clouds. The core height (REF > 35dBZ) has 
also reached around 10 km. The same regions with maxi-
mum reflectivity received high accumulated rainfall of over 
20 mm/day during the course of the day (Fig. 8c). Upon 
further examination of the evolution of reflectivity, it is 
seen that the system remains relatively stationary overall, 
as shown in Fig. 9. Between 11:02 UTC and 13:02 UTC, 
there is little development, though the structure is visible. 
However, starting at 13:42 UTC, the system begins to inten-
sify. A less intense cluster with reflectivity values below 
30 dBZ is observed on the left, while a smaller but more 
intense cloud cluster with reflectivity values exceeding 35 
dBZ forms in and around the core in the southeastern part. 
By 14:42 UTC, the system has matured, with both structures 
surpassing reflectivity values of 35 dBZ, and the core reach-
ing values of 45 dBZ or more. This situation persists for a 
while, and rainfall begins to subside by 16:12 UTC. Fig-
ure 10 illustrates the radar-estimated VIL retrievals across 
different equations with observation and bias during the 
mature stage. The statistical analysis is shown in Table 4.

Figure 10a represents the observed TCCLW (kg/m2) 
from ERA5, and Fig. 10b shows the estimated VIL from 
DWR using Eq. 2.1. The overall spatial pattern of the 
observed and estimated VIL matches. The higher values 
(> 0.35 kg/m2) in the radar-derived VIL towards the right 
of the observation, especially near and in the neighbour-
ing state of MP show a good matching. However, in the 
observation higher values are between 75°E and 76°E lon-
gitude, whereas in the radar estimation, they are between 
76.5°E and 77°E longitude. Both reanalysis smoothing 
and interpolation of observations could have caused the 
observed longitudinal displacement of extreme values in 

(2.1)log(LWC(Z) = 0.057Z − 2.46

Fig. 8  Images from satellite, radar and rainfall rate on 25 June 2020, (a) INSAT-3D Brightness Temperature (K) at 12:15 UTC, (b) Jaipur IMD 
DWR derived maximum reflectivity (dBZ) at 12:13 UTC, (c) 24 h accumulated rainfall (mm)
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rainfall patterns. Both observation and radar estimation 
show maximum values of VIL at areas where reflectiv-
ity is higher than 35 dBZ (Fig. 9). Most of the regions 
with lower VIL are captured by radar with an exception 

in regions near 27°N latitude. Overall bias is near zero; 
nevertheless, we can observe a slight overestimation in 
the higher VIL region (Fig. 10c). Conversely, most of the 
negative bias is spread in the regions of low reflectivity, 

Fig. 9  Evolution of IMD gridded radar reflectivity (dBZ) during maturing stage of the event on 25 June 2020
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Fig. 9  (continued)
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reaching below—0.3 at some regions. This negative bias 
may stem from factors such as attenuation effects or limi-
tations in radar calibration near intense convective cores 
(Illingworth et al. 2000). VIL exhibits an STD of 0.023 
which is the lowest of all, indicating moderate variability, 
while TCCLW shows a slightly higher STD of 0.072, sug-
gesting greater variability. A lowest RMSD value of 0.112 
during the mature stage indicates the average differences 
between the observed and predicted values. The MBD of 
−0.068 indicates an overall slight underestimation and the 
lowest MAE for the mature stage of 0.085 represents the 
average magnitude of errors. The BMI value of 0.05, with 
a p-value of 0.001, indicates a significant positive spatial 
correlation.

Comparing the radar retrieval of Eq. 2.1 with that of 
Eq. 2.2, the central part of the small cloud cluster around 
the northwestern part (28°N Latitude) becomes visible 
with a value of VIL more than 0.4 kg/m2 (Fig. 10d). In 
comparison with observation, regions of lower VIL have 
been captured clearly by this equation as well. Addition-
ally, the bias (Fig. 10e) around the high reflectivity region 
and the surrounding area of the larger cluster has been 
reduced. The bias is nearly zero with faint patches in the 
high reflectivity area, and the left core shows enhanced 
VIL values, particularly in the core region. However, in 
the right cluster, where the bias is reduced, the region with 
VIL values ranging from 0.05 to 0.1 kg/m2 is not very vis-
ible. The spatial pattern is comparable with the observa-
tion. Equation 2.2 reveals an STD of 0.024 for VIL from 
radar, indicating moderate variability. The RMSD of 0.115 
suggests moderate discrepancies between observed and 
predicted values. The MBD of −0.071 suggests a slight 
underestimation in VIL estimation. The MAE of 0.088 
reflects the average magnitude of prediction errors, illus-
trating the equation’s overall accuracy in estimating VIL. 
Moreover, the BMI of 0.5 indicates a significant spatial 
autocorrelation in TCCLW values, implying that nearby 
locations tend to have similar VIL values.

Upon analysing the Eq. 2.3 VIL retrieval (Fig. 10f), we 
observe better performance in capturing higher VIL values 
around the central region of the cluster on the western side. 
In the eastern cluster, the region with VIL values less than 
0.5 kg/m2 around the high reflectivity region is now visible. 
Additionally, the region with VIL estimated has increased in 
comparison with Eq. 2.1 and Eq. 2.2 in this retrieval. New 
regions are in lower reflectivity areas away from the central 
part of both clusters. These new regions are in the lower VIL 
range mostly showing slight underestimation with near zero 

(2.2)log(LWC(Z) = 0.066Z − 2.80

(2.3)log(LWC(Z) = 0.050Z − 2.18

negative bias (Fig. 10g). These regions can be identified in 
the observation as well. There is a greater positive bias in 
this estimation at the high reflectivity regions of both clus-
ters compared to other equations indicating overestimation. 
Equation 2.3 also exhibits a lower STD of 0.027 during the 
mature stage. The RMSD of 0.130 has moderate discrep-
ancies. The MBD of −0.090 suggests an underestimation 
in VIL predictions. The MAE of 0.103 reflects the average 
magnitude of prediction errors. Moreover, the BMI of 0.65 
indicates a strong spatial autocorrelation between observa-
tion and estimation, implying that nearby locations tend to 
have highly similar values.

Based on the analysis of Eq. 2.4, several distinct observa-
tions have emerged. Firstly, compared to already analysed 
equations, there is a noticeable reduction in the region 
where VIL values range from 0.05 to 0.1 kg/m2 (Fig. 10h). 
Additionally, we can see a reduction in VIL estimated 
areas within the high reflectivity regions of the cluster in 
the western side, where values range from 0.1 to 0.2 kg/m2. 
Moreover, a more pronounced and widespread negative bias 
is observed across the western cluster, which is more wide-
spread (Fig. 10i). Equation 2.4 exhibits an STD of 0.023 for 
VIL from radar, indicating moderate variability. The RMSD 
of 0.133 is the highest among the equations. The MBD of 
−0.097 suggests a slight underestimation in VIL predictions. 
The MAE of 0.106 is the highest among all prediction errors 
obtained from Eqs. 2.1–2.5. Moreover, a BMI of 0.7 indi-
cates a strong spatial autocorrelation.

Equation 2.5 shows improved spatial coverage compared 
to all previous equations, with VIL in the high reflectivity 
region clearly visible (Fig. 10j). High reflectivity regions 
in both the eastern and the western cluster exhibit VIL val-
ues exceeding 0.4 kg/m2. Additionally, there is an expanded 
region with VIL values ranging from 0.05 to 0.1 kg/m2 as 
well and we can see this very distinctively. A small region 
in the northwest displays VIL values exceeding 0.4 kg/
m2, which was not visible in any of the previous estima-
tions. Positive bias has been notably reduced across most 
areas, though some negative bias persists in low reflectivity 
regions (Fig. 10k). However, regions where observations 
indicate VIL values surpassing 0.3 kg/m2 show a positive 
bias exceeding 0.2.

The highest STD of 0.029 for VIL from radar is calcu-
lated. The RMSD of 0.133 suggests discrepancies between 
observed and predicted values. The MBD of −0.090 sug-
gests underestimation in VIL predictions, while the MAE 
of 0.105 reflects the average magnitude of prediction errors. 
Moreover, Eq. 2.5 exhibits a BMI of 0.8, indicating the 

(2.4)log(LWC(Z) = −0.0005Z2 + 0.084Z − 2.77

(2.5)log(LWC(Z, ZDR) = 0.058Z − 0.118ZDR − 2.36
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strongest spatial autocorrelation in TCCLW values, empha-
sising the spatial coherence captured by the equation. The 
analysis of equations showcases promising advancements in 
estimating VIL from radar data. Equation 2.1 demonstrates 
a good performance across regions with lower error matri-
ces. However, Eq. 2.5 excels in spatial coverage and spa-
tial coherence, making it especially effective for capturing 
larger areas. While it introduces slightly more errors in high 
reflectivity zones, its advantages in broader coverage make 
it a strong contender. (Results for another event, 14:00 UTC 
of 1 July 2022, which also gave similar results are added in 
supplementary datasets, Figs. 1 and Table. s1).

3.2.2  Day analysis for 25 June 2020

Moving into daily analysis, Fig. 11 illustrates the radar-esti-
mated VIL retrievals across different equations with obser-
vation and bias for 25 June 2020. The statistical analysis 
has been shown in Table 5 and standard deviation plots are 
given in Fig. 12.

The 24-h TCCLW (Fig. 11a) ranges up to 0.23 kg/m2 
within the radar range. The major spatial structure shows 
values between 0.1 and 0.2 kg/m2 in the lower eastern 
and northeastern parts. Additionally, there are VIL regions 
with values below 0.05 kg/m2 in the western part, where 
one of the major cloud clusters was identified from the 
maximum reflectivity plot (Fig. 8b). Another patch with 
similar values is in the central-southwestern part of the 
region, where a second cloud cluster is present. A simi-
lar pattern is observed in the northern part of the region 
as well. The remaining areas exhibit values ranging from 
0.05 to 0.1 kg/m2. The spatial standard deviation analysis 
(Fig. 12a) shows that regions with higher VIL values also 
have higher standard deviations (0.6–0.8), while the rest 
of the region has lower standard deviations.

Considering the VIL estimates using Eq. 2.1 (Fig. 11b), 
two clusters are visible on both the eastern and western 
sides with VIL values ranging from 0 to 0.5 kg/m2 similar 
to observation (Fig. 11a). Small patches of VIL values 
in the same range are also observed in the northwestern 
part of the region. Analysing the bias of the estimation 
(Fig. 11c), regions with VIL values greater than 0.05 kg/
m2 exhibit a lower negative bias ranging from −0.06 to 
less than −0.02, indicating slight underestimation. A 
higher negative bias is noted in the low reflectivity region 
of the cluster, while the rest of the region shows either 

a lower negative bias (up to −0.1 or more) or near-zero 
biases. The STD plot for Eq. 2.1 (Fig. 12b) demonstrates 
that areas with higher VIL values also have higher STD 
values ranging from 1.2 to 1.4 or more, indicating signifi-
cant variability in VIL values within the high reflectivity 
region and surrounding regions.

The VIL estimation using Eq. 2.2 (Fig. 11d) shows a 
spatial pattern similar to the observed data with VIL values 
ranging from 0.0 to 0.5 kg/m2. The variation in spatial pat-
tern compared to Eq. 2.1 (Fig. 11b) is minimal. Notably, 
the VIL values around the high VIL region of the western 
cluster are reduced to less than 0.05 kg/m2, resulting in a 
less distinct pattern compared to Eq. 2.1 estimation, but it 
aligns more closely with the observation. This alignment 
is further reflected in the bias pattern (Fig. 11e), where the 
negative bias around the high reflectivity region approaches 
a low value. Additionally, in the STD plots (Fig. 12c), 
the areas where bias has moved towards zero also show 
a reduced STD of 0.4–0.6, indicating lower variability in 
these regions.

The VIL estimation using Eq. 2.3 (Fig. 11f) reveals a 
much clearer spatial pattern particularly around the bounda-
ries of both clusters, especially in the western cluster with 
VIL values reaching 0.05 kg/m2, similar to the observa-
tion (Fig. 10a). This improved clarity is also evident in the 
clustering of other smaller regions. When assessing with 
the bias (Fig. 10g), it is observed that these regions have 
negative bias values, ranging from −0.02 or lower. The STD 
plot (Fig. 11d) also indicates that regions with elevated VIL 
values also exhibit higher STD, exceeding 1.2, reflecting 
greater variability in these areas. The spatial pattern of VIL 
estimated using Eq. 2.4 (Fig. 11h) is less distinct compared 
to Eq. 2.3. While the spatial distribution of bias (Fig. 11i) 
shows negative bias around the high reflectivity region, 
similar to Eq. 2.3, these regions also exhibit higher STD, 
exceeding 1.2 (Fig. 12e). This suggests that despite the lower 
negative bias in the core areas, the variability in VIL values 
is relatively high.

Equation 2.5 offers a notably well-defined VIL estimation 
structure (Fig. 11j), surpassing the clarity seen in previous 
equations. This improved estimation is particularly evident 
in the western cluster of the region and aligns closely with 
the observed pattern (Fig. 11a), capturing the essence of 
both clusters effectively. There is an addition of a VIL region 
with values up to 0.05 kg/m2 near the radar location, as well 
as a similar trend in the eastern part of the region. The bias 
analysis (Fig. 11k) highlights that while the newly added 
region shows a negative bias of −0.06 or lower, the high 
VIL region with VIL values greater than 0.05 kg/m2 dem-
onstrates a lower negative bias of less than −0.02. The STD 
(Fig. 12f) further reinforces these improvements, showing 
higher values (greater than 1.2) in the high reflectivity region 
and lower values in the surrounding areas.

Fig. 10  (a) Observed TCCLW(kg/m2) from ERA-5, (b & c) radar 
estimated VIL using Eq. 2.1 and its bias respectively, (d & e) radar 
estimated VIL using Eq. 2.2 and its bias respectively,( f & g) radar 
estimated VIL using Eq. 2.3 and its bias respectively, (h & i) radar 
estimated VIL using Eq.  2.4 and its bias respectively and (j & k) 
radar estimated VIL using Eq.  2.5 and its bias respectively for 
13:00UTC on 25 June 2020

◂
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In the 24-h analysis also we can see that regions with 
high reflectivity have higher VIL values and these are also 
the locations with low negative bias but with a high standard 
deviation. From the estimation of Eq. 2.5 we can see a bet-
ter spatial clarity in the structures. Among the equations, 
Eq. 2.1 has the lowest STD of 0.024 but exhibits the high-
est RMSD of 0.138, indicating significant average predic-
tion errors. It’s very weak, r of 0.052 and MAE of 0.102 
suggest lower accuracy and a tendency to underpredict. 
Equations 2.2 and 2.3 show low variability with STDs of 
0.025 and 0.028, respectively. Both equations have mod-
erate RMSD values (0.120 for 2.2 and 0.135 for 2.3) and 
weak correlations (r of 0.054 for 2.2 and 0.095 for 2.3), 
reflecting similar issues with prediction accuracy and mod-
erate overall errors. Equation 2.4, with an STD of 0.027 and 
an RMSD of 0.137, also displays relatively low variability 
but moderate prediction errors and a weak correlation (r of 
0.076). In comparison, Eq. 2.5 outperforms the others with 
an STD of 0.029, a moderate RMSD of 0.115, and a weak 
but positive correlation coefficient (r) of 0.079. Its MAE of 
0.085 and MBD of −0.065 reflect a moderate level of over-
all error and a slight tendency to underpredict. Moreover, 
Eq. 2.5 achieves the highest BMI value of 0.04, indicat-
ing the strongest spatial autocorrelation among the models. 
(Result for another day, 1 July 2022 is added in supplemen-
tary datasets Figs. 2, s3 and Table s2).

3.2.3  Comparative analysis of radar derived VIL with other 
parameters on June 25, 2020

We utilised one swath of MODIS data, ERA5 precipitation 
type data and reflectivity to analyse the DWR-estimated VIL 
using Eq. 2.5, which was identified as the most accurate 
based on hourly and daily analysis.

A clear and well-defined pattern of liquid water is evident 
in the LWP retrieval from MODIS (Fig. 13a). A U-shaped 
structure extending from the northwestern part to the north-
eastern part is seen with VIL values ranging from 0.4 kg/
m2 and higher where the cluster present in the northern part 
values less than 0.4 kg/m2 is present. In the southern region, 

we can see cloud structure with LWP values up to 0.5 kg/
m2 in and out of the radar range. Most of the other regions, 
including the central part have values less than 0.1 kg/
m2. DWR-estimated VIL (kg/m2) (Fig. 13b) also shows a 
U-shaped structure in the northern part with similar values 
to that of the satellite-derived liquid water even though the 
size of the clusters is comparatively small. Conversely, it 
exhibits lower values, often less than 0.1 kg/m2 away from 
these high VIL central regions. In the southern region DWR 
could not detect any VIL whereas in the central part, small 
patches are visible Additionally, when comparing with the 
cloud phase (Fig. 13c), the MODIS algorithm categorizes 
regions where liquid water values are less than 0.1 kg/m2 in 
both satellite and DWR data as water clouds. In the northern 
U-shaped cluster, where liquid water values are higher, most 
regions are either in an undetermined phase or classified 
as ice clouds, with only some parts categorized as water 
clouds. The southern region where most of the liquid water 
values are till 0.45 kg/m2 is in the water cloud region with 
very small points in the ice cloud phase. Where VIL was 
identified by both satellite observations and DWR, most of 
the regions with water clouds show rainfall according to pre-
cipitation type (Fig. 13d), indicating precipitation in liquid 
form. The region with higher liquid water also corresponds 
to high reflectivity (> 40 dBZ) and a maximum vertical 
height of over 10 km (Fig. 13e), resulting from a significant 
number of hydrometeors, including liquid water. Overall, the 
spatial pattern of radar-retrieved VIL closely matches the 
satellite observations, with values higher in the high reflec-
tivity regions. Areas with detected liquid water align with 
regions identified as water clouds, and locations with rain 
are accurately categorised as precipitation type. However, 
the radar could not detect VIL in some regions, especially 
in the south, where satellites did. This discrepancy may be 
due to beam blockage. This may be because the DWR data 
come from weather radar, which might not be able to detect 
small liquid droplets. Interpolating MODIS data from 1 km 
resolution to 2 km to match radar resolution may not signifi-
cantly affect the bias, though the satellite could provide more 
detailed data. However, the closest radar data is at 08:42 
UTC, while the satellite data is at 08:45 UTC. This 3-min 
gap can influence the spatial spread of liquid water, as the 
cloud system may have grown during this time, although the 
impact is likely not significant as the development of cloud 
droplets into raindrops occurs on the order of ten minutes in 
convective clouds (Murty and Chandrasekhar 2011).

3.2.4  Daily analysis of selected days

For each selected day, RMSE and MAE have been calculated 
for the daily estimated VIL relative to ERA5 TCCLW. Fig-
ure 14 shows these error matrices along with area-weighted 
average rainfall.

Table 4  Table of error matrix showing the statistical analysis between 
ERA5 TCCLW (kg/m2) and radar retrieved VIL (kg/m2) for 13:00:00 
UTC June 25 2020

Source STD RMSE MBD MAE

ERA5 0.072
Equation 2.1 0.023 0.112 −0.068 0.085
Equation 2.2 0.024 0.115 −0.071 0.088
Equation 2.3 0.027 0.130 −0.090 0.103
Equation 2.4 0.023 0.133 −0.097 0.106
Equation 2.5 0.029 0.133 −0.090 0.105
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Examining the error matrices for 2020 (Fig.  14a for 
RMSE and b for MAE), Eq. 2.5 consistently exhibited lower 
RMSE and MAE values across various days, demonstrat-
ing its superior accuracy in estimating rainfall. Specifically, 
RMSE values for Eq. 2.5 ranged from 0.061 to 0.102, while 
MAE values ranged from 0.056 to 0.155. These values are 
typically the lowest among the equations assessed. Equa-
tion 2.3 demonstrated competitive performance but gen-
erally had higher error metrics. While Eq. 2.3 performed 
comparably on some days, it exhibited higher RMSE and 
MAE values than Eq. 2.5 on several occasions, particu-
larly during high-intensity rainfall events. The other equa-
tions (Eq. 2.1, Eq. 2.2, and Eq. 2.4) showed slightly higher 
RMSE and MAE values than to Eq. 2.5. Despite their initial 
strong performance during July, when the SW monsoon just 
arrived in the region with low rainfall intensity, they gener-
ally exhibited less accuracy in rainfall estimation relative 
to Eq. 2.5 later on. The analysis revealed that RMSE and 
MAE values increased with higher rainfall intensity. For 
instance, on high rainfall days such as August 20, 2020, with 
455.51 mm of rainfall, the RMSE and MAE values were 
elevated, indicating that error metrics tend to increase with 
more intense rainfall events. However, Eq. 2.5 maintained 
relatively lower error metrics even on these high-intensity 
rainfall days, highlighting its robustness in handling varying 
rainfall conditions.

For 2021 (Fig. 13c for RMSE and d for MAE), in com-
parison, Eq. 2.1 shows slightly higher error metrics. The 
RMSE for Eq. 2.1 ranges from 0.053 to 0.374, while the 
MAE ranges from 0.049 to 0.272. These values are gener-
ally higher than those of Eq. 2.5, indicating a less accurate 
performance. Equation 2.2's performance is close to that 
of Eq. 2.1, but it still exhibits slightly higher error metrics 
compared to Eq. 2.5. Equation 2.3 displays competitive 
performance but tends to have higher RMSE and MAE 
values compared to Eq. 2.5 in several days. Similarly, 
Eq. 2.4 also has slightly higher error metrics than Eq. 2.5. 
Equation 2.5 consistently demonstrates lower RMSE and 
MAE values compared to other equations. Specifically, the 
RMSE values for Eq. 2.5 range from 0.051 to 0.373, while 
the MAE values range from 0.047 to 0.343. These lower 
values suggest that Eq. 2.5 provides more accurate VIL 
estimates. On several days, Eq. 2.5 achieved the lowest 
RMSE and MAE values, indicating superior accuracy, par-
ticularly for days with high-intensity rainfall. This superior 
performance highlights Eq. 2.5’s effectiveness in accurately 
capturing VIL measurements, especially during significant 
rainfall events. Equation 2.5 consistently outperforms the 
other equations in terms of accuracy for estimating VIL, as 
indicated by its lower RMSE and MAE values.

For 2022 (Fig.  13e for RMSE and f for MAE), this 
also shows similar results, with Eq. 2.5 performing better. 

Equation 2.5 has lower MAE values compared to other equa-
tions. The RMSE values for Eq. 2.5 are generally lower, 
indicating better performance in terms of error magnitude. 
The other equations, Eq. 2.1 to Eq. 2.4, show higher MAE 
and RMSE values than Eq. 2.5 on many days. Specifically, 
Eq. 2.1 and Eq. 2.4 often have higher MAE and RMSE, 
indicating less accuracy in rainfall estimation. Although 
Eq. 2.2 and Eq. 2.3 perform well, Eq. 2.5 still outperforms 
them overall, with lower error metrics across the dataset. It 
also maintains lower errors even during high rainfall inten-
sities, suggesting it handles high-intensity conditions more 
effectively. Even for lower rainfall conditions, such as on 
19–06–2022 (168.69 mm), Eq. 2.5 maintains a lower error 
margin compared to others.

Overall, Eq.  2.5 consistently demonstrates superior 
accuracy in estimating rainfall across the selected days. 
Its lower RMSE and MAE values indicate it performs bet-
ter than other equations, particularly during high-intensity 
rainfall events. While other equations like Eqs. 2.1, 2.2, 
2.3, and 2.4 show competitive results, they generally exhibit 
higher error metrics compared to Eq. 2.5. This highlights 
Eq. 2.5's robustness and reliability in accurately capturing 
VIL measurements and handling varying rainfall conditions 
effectively. Overall, errors increase with increasing rainfall. 
The inclusion of ZDR in Eq. 2.5 enhances the estimation of 
liquid water content and VIL by accounting for the shape 
and distribution of hydrometeors, even in high rainfall situ-
ations. High errors during intense rainfall can be attrib-
uted to several interrelated factors. During heavy rainfall, 
anomalous propagation, occultation by large droplets during 
strong updrafts, beam-broadening effects with non-uniform 
beam filling, and attenuation and scattering contribute to 
increased errors in radar-based estimations. Additionally, 
assumptions about the drop size distribution (DSD) based 
on the Marshall-Palmer distribution may not hold, as drop 
size distributions deviate significantly from this model in 
intense rainfall conditions (Marshall and Palmer 1948; 
Harrison et al. 2000). Reflectivity is highly sensitive to the 
sixth power of droplet diameter (D⁶) Doviak et al. (1994), 
which can lead to overestimation when larger drops domi-
nate convective rain (Thomas et al. 2021). In contrast, dur-
ing light rainfall, DSDs are more uniform, reducing such 
biases. ERA5, which relies on numerical weather predic-
tion models to estimate liquid water content, may smooth 
out extreme values due to its coarser spatial and temporal 
resolution, leading to biases during heavy rainfall events. 
Moreover, intense precipitation often involves mixed-phase 
hydrometeors (e.g., rain, hail, graupel) and strong vertical 
motions, further complicating reflectivity-based retriev-
als. However, ZDR offers an advantage in distinguishing 
between different hydrometeor types and mitigating some 
of these uncertainties.
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4  Summary

To enhance precipitation forecasting and gain a deeper 
understanding of cloud processes, it is crucial to thoroughly 

investigate cloud microphysical parameters such as VIL 
across extensive spatial and temporal scales. In this study, 
VIL was estimated using four different sets of Z-LWC rela-
tionships and one Z, ZDR-LWC relationship collected from 
the literature, and the results were analysed for best perform-
ing one. For this, data from the C-Band DWR at the IMD 
Jaipur station for 78 SM heavy rainfall days in 2020, 2021, 
and 2022 were quality controlled, gridded and utilised. First, 
a long-term average study from 2003 to 2023 for LWCP 
and TCCLW, along with three different rainfall datasets, 
were analysed monthly and aggregated for the SM monsoon 
period. Further, VIL was estimated for 13:00 UTC, 25 June 
2020 using all equations and was analysed relative to ERA5 
TCCLW. Then VIL for the entire day was examined and VIL 
estimated from the best performing equation thus far was 
compared with parameters including MODIS-derived LWP 
and cloud phase for the time when satellite data was avail-
able for the day. Finally, VIL was estimated and analysed for 
all selected days for the best-performing equation overall.

A long-term study highlighted that liquid water is high in 
the southeastern part during June and spreads to the central 
and northern part by the next two months as the rainfall 
progresses. The value is lowest in June and September as 

Fig. 11  (a) Observed TCCLW(kg/m2) from ERA-5, (b & c) radar 
estimated VIL using Eq. 2.1 and its bias respectively, (d & e) radar 
estimated VIL using Eq. 2.2 and its bias respectively, (f & g) radar 
estimated VIL using Eq. 2.3 and its bias respectively, (h & i) radar 
estimated VIL using Eq.  2.4 and its bias respectively and (j & k) 
radar estimated VIL using Eq.  2.5 and its bias respectively for 25 
June 2020

◂

Table 5  Table of error matrix showing the statistical analysis between 
ERA5 TCCLW (kg/m2) and radar retrieved VIL (kg/m2) for June 25 
2020

Source STD RMSE r MBD MAE

ERA5 0.072
Equation 2.1 0.024 0.138 0.052 −0.068 0.102
Equation 2.2 0.025 0.120 0.054 −0.071 0.088
Equation 2.3 0.028 0.135 0.055 −0.090 0.103
Equation 2.4 0.027 0.137 0.076 −0.097 0.106
Equation 2.5 0.029 0.115 0.079 −0.065 0.085

Fig. 12  Standard deviation plots of (a) ERA5 TCCLW, radar retrieved VIL using (b) Eq. 2.1, (c) Eq. 2.2, (d) Eq. 2.3, (e) Eq. 2.4 and (f) Eq. 2.5 
for 25 June 2020
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Fig. 13  Spatial distribution of (a) Liquid water path (kg/m2) from 
MODIS at 08:45UTC, (b) VIL (kg/m2) from DWR at 08:42UTC, (c) 
Cloud phase from MODIS at 08:45: 00 UTC, (d) Precipitation type 

from ERA5 for 09 00 UTC and (e) Max Reflectivity (dBZ) at 08:42: 
00 UTC  for 2020 June 25  over a  region centering at DWR-Jaipur 
location (24N-30N; 73E-79E)

Fig. 14  Analysis of RMSE (left column) and MAE (right column) along with area weighted average rainfall (Bar plot) for the selected days for 
different equations during monsoon seasons of 2020 (a, b), 2021 (c, d) and 2022 (e, f)
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it is the time when SM arrives and retreats. It showed a 
diagonal variation with higher values in the southeastern 
part and some concentration across the diagonal line prob-
ably because of the orographic effect of the Aravali range. 
Overall, there is good agreement between the observed and 
estimated values and locations. Radar-derived VIL shows 
the small-scale variation more accurately with high VIL in 
the high reflectivity region, clearly depicting the in-cloud 
variation of liquid water. During the mature stage, the 
higher VIL was observed in high reflectivity regions with 
positive bias, while lower VIL was found in lower reflectiv-
ity regions with negative bias. Nonetheless, Eq. 2.5, which 
incorporates ZDR data, significantly enhances VIL estima-
tion by accurately detecting high VIL regions and reducing 
biases. We found that most locations where VIL was esti-
mated by DWR and satellite corresponded to areas with liq-
uid-phase clouds and rainfall, suggesting that VIL estimates 
are effective in identifying regions with active precipitation 
and significant liquid water content. In the daily analysis the 
result was interesting as there was no positive bias but with 
very low negative bias indicating slight underestimation. 
Bias was lower in high VIL regions with high STD. Despite 
a higher STD, Eq. 2.5 remains the most effective estimator. 
In the daily analysis of all selected days high error was seen 
on high rainfall days. Although all the equations yielded 
similar error estimations Eq. 2.5 considering hydrometeor 
shape and distribution consistently demonstrates superior 
accuracy with lower RMSE and MAE values particularly 
during high-intensity rainfall events. We also tested a sixth 
equation with Eq. 2.5's coefficients adjusted for the German 
DSD, but this equation led to extensive errors and did not 
improve quality.

This study is the first to comprehensively evaluate and 
compare multiple equations for estimating VIL using DWR 
data over the Indian domain. The insights gained into the 
strengths and limitations of each method will guide future 
studies in selecting and refining estimation techniques. The 
datasets retrieved by this way can be assimilated in real time, 
research-based studies and understanding the microphysi-
cal representation in the existing weather models. We saw 
that there are some areas where VIL shows ice clouds or 
undetermined phases. This can be addressed by developing 
VIL estimators for different convective systems such as deep 
and shallow convection. Data loss by beam blockage can be 
addressed by optimized radar scanning strategies (adjust-
ing elevation angles), terrain-based corrections for radar 
derived variables, multi-radar or multi-sensor fusion (com-
bining data from other radars or satellites). Additionally, 
incorporating in situ measurements such as disdrometer into 
the analysis can address the shifts observed in the location 
of some VIL clusters probably resulted by interpolation of 
ERA5 data and assist in developing region and cloud-type 
estimators. Including ZDR improves applicability across 

regions and seasons by providing hydrometeor shape and 
size information. This enhances accuracy in mixed-phase 
precipitation and non-uniform drop size distributions while 
reducing errors by distinguishing hail from large raindrops. 
Further other polarimetric variables like KDP and correla-
tion coefficient (ρhv) in conjunction with ZDR and methods 
such as attenuation-based estimation can be done. Relying 
solely on C-band radar can underestimate VIL, integrating 
multi-frequency radar (e.g., Ka or W) and satellite data may 
enhance sensitivity and accuracy. This study is among the 
first to thoroughly evaluate and compare multiple equations 
for estimating VIL using DWR data in the Indian region. 
The insights gained will serve as a valuable reference for 
future research, helping to refine and adopt more appropri-
ate estimation techniques. The datasets generated in this 
study can be integrated into real-time simulations, which 
the authors will explore in future steps to enhance the repre-
sentation of cloud microphysics in current weather models.
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