

1. Background

- Glaciers influence water, sediment, and elemental cycles in warming climate, impacting atmospheric CO, levels and climate evolution through **chemical weathering**^[1-4].
- Silicate weathering produces distinct mineral tracers: clays, oxides, and oxyhydroxides. Meteoric ¹⁰Be has the potential to be used as a tracer for glacier-induced chemical weathering since it can be incorporated within authigenic minerals^[5-7].
- ¹⁰Be_{met} in glacial soil profiles includes modern deposition at the top horizons and an inherited fraction from soil's parent material at the lower horizon that can serve as archives of sub-glacial weathering processes^[8-12].

2. Aims

1. Measure ¹⁰Be_{met} deposition rates in modern precipitation and dated glacial sediment archives, addressing the data gap in 50°-70° latitude and high-altitude regions [13-45].

2. Analyse the degree to which, products of chemical weathering within glacial sediments date to the glacial period (work in progress) [46-51]

Depositional flux of meteoric ¹⁰Be: Observations from northern Britain

Aaditya Nath Kapil^{1,2}, Jon Telling², Ana Carracedo³, Vasile Ersek¹, Joseph Graly¹

(*Aaditya.Kapil@northumbria.ac.uk) ¹Northumbria University, UK, ²Newcastle University, UK, ³Scottish universities Environmental Research Centre

4. Conclusions

•We present the first field observation of contemporary meteoric ¹⁰Be_{met} deposition rates from 50-60°N latitude.

•Strong correlation of ¹⁰Be_{met} (R² = 0.92, P-value = 0.023) with precipitation, consistent with a scavenging effect, except July '23 (Storm Poly- outlier).

• Deposition flux= 1.29 × 10⁶ atoms/cm²/yr (or 2.03 × 10⁶ with outlier); matches model outputs (Heikkilä et al., **2015**: **1.22** × **10**⁶) ^[52].

•Phase distribution of ¹⁰Be_{met} from sequential extractions: ~70% oxyhydroxides and 30% adsorbed species, exceptions at Sail Mhor, Ullapool, and Low Hauxley-possibly due to lithological controls.

5. References and Contact

