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We define our cratons as the fastest region from the six clusters produced by K-means 
clustering analysis of velocity profiles from  tomographic model SL2013sv. The borders of our 
identified cratons correspond well to those identified using other methods, such as lithospheric 
thickness or the presence of Archaean basement rock.

We invert a global average set of dispersion curves across all cratonic nodes in our 
regionalisation, as well as interstation dispersion curves across four cratons, and regionally 
averaged dispersion curves for four sub-regions of the Kalahari craton.

Prior tomographic models, produced using a wide range of techiques, consistently show a velocity maximum at 
around 150 km depth, entirely within the lithosphere, shown here in the average 1D velocity profiles from each 
model through the same regionalisation we use to define cratons. This would require temperature to decrease, or 
layered compositional variation to exist, pervasively across cratons.

As these models span a range of different treatments of anisotropy, crustal structure, and forward calculation 
methods, either, as previously interpreted, this velocity increase must reflect real, and unusual, structure, or, as 
we identify, it can be produced due to a bias common across all these methods.
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Why the Bump? In model space, average velocity from the sub-Moho to 
150 km is well constrained, but the two trade off strongly.Seismic inversions can produce the same result as 

our thermodynamic inversion, given the right 
choice of background model. Models which more 
closely fit a cratonic average velocity, such as our 
output model, a smoothed version of SL2013sv, or 
ak135 with the lithosphere made 350 m/s faster all 
produce models without the bump.

Models made using a faster background model do 
lack the bump, including TX2011, TX2019slab, and 
GyPSuM.

The two possibilities - bump and no bump - can 
both fit the data within 0.1% misfit at all periods for 
a global average dataset.
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Composition (weight % of Mg, Fe, 
Ca, Al, Si oxides) + temperature

Equilibrium geotherm calculated, 
factoring in stratified radiogenic 

heat production in the crust

Phase equilibria computed at each 
depth from temperature and 
pressure (W. Xu et al., 2008)

Elastic parameters calculated for 
those equilibria and conditions with 

Perple_X (Connolly, 2011)

Those elastic parameters taken 
together with attenuation to 

produce VP, VSV, and VSH profiles

Phase velocity dispersion curves 
calculated from those, and their fit 

to data minimised in inversion.
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We invert directly for composition and 
temperature with depth, following the 
methodology of Fullea et al. (2021), 
updated by Y. Xu et al. (2023).

Both globally and regionally, direct 
inversion for temperature and 
composition produces models without 
this bump. Where regional dispersion 
data was limited to <100 s  maximum 
period, velocity profiles have been 
truncated at 250 km depth.

The fit to data is as good or better 
compared to fits from purely seismic 
inversions. 

Regionalisation from Schaeffer & Lebedev (2015); background model SL2013sv (Schaeffer & Lebedev, 2013)
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Abstract
                            Most published shear-wave (VS) velocity models of cratons include a VS increase with depth below the Moho, with a maximum at 100-150 km depth. This feature is seen in regional and global 3D tomography models and in regional 1D VS profiles. Taken at face value, it implies an oscillatory
geotherm, with a ubiquitous temperature decrease below the Moho, which is implausible. The VS increase with depth has thus been attributed to strong compositional layering in the lithosphere. One recent model postulated widespread hydration and metasomatism in the uppermost cratonic mantle, 
decreasing VS just below the Moho. An alternative model suggested a strong enrichment of the lower cratonic lithosphere in eclogite and diamond, increasing VS but implying an unusual lithospheric composition. 

Here, we assemble a representative dataset of phase-velocity curves of Rayleigh and Love surface waves for cratons globally, including the all-craton averages, averages over regions in southern Africa, and interstation measurements elsewhere. We perform both thermodynamic and purely seismic inversions 
and show that the sub-Moho VS increase is not required by the data. Models with equilibrium, conductive lithospheric geotherms and ordinary, depleted-peridotite compositions fit the surface-wave data fully. A model-space mapping quantifies the strong trade-off between seismic velocities just below the Moho 
and at 100-150 km depth, which is the cause of the ambiguity. The reason why most seismic models contain a VS increase with depth below the Moho is regularization that penalizes deviations from global average reference models, which are much slower than cratonic VS profiles.
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