

Quantifying Inorganic Carbon Dynamics in Cold-Temperate Seagrass Meadows

Samuel Scott-Askin¹, Isaac R. Santos¹, Gerli Albert², Maria E. Asplund¹, Diana Deyanova¹, Sara C. Forsberg², Aurora M. Ricart³, Martin Gullström², Mats Björk⁴, Gloria Reithmaier¹

Research questions

• Are cold-temperate seagrass meadows net sources or sinks of total alkalinity (TA) and dissolved inorganic carbon (DIC), and what are the drivers? • Are cold-temperate seagrass meadows local refugia from ocean acidification?

EGU

- Photosynthesis, aerobic respiration and $CaCO_3$ dissolution are the strongest drivers of DIC dynamics in cold-temperate seagrass meadows
- Stronger acidification refugia during the day due to CO_2 uptake
- Meadows were a net source of TA, and a variable net sink of DIC
- The overlooked TA production vs. carbon burial demonstrates its potential to contribute to carbon sequestration in cold-temperate

Dahl, M., Asplund, M. E., Bergman, S., Björk, M., Braun, S., Löfgren, E., Martí, E., Masque, P., Svensson, R., & Gullström, M. (2023). First assessment of seagrass carbon accumulation rates in Sweden: A field study from a fjord system at the Climate