
Study areas were selected based on their representation of diverse hydrological flow regimes. To

support the development of a generalized and transferable river discharge estimation model, one area

was chosen from each of three different basins: Memphis along the Mississippi River (USA),

Pontelagoscuro along the Po River (Italy), and the Sogutluhan along Kizilirmak River (Türkiye)

(Figure 1).

This section presents preliminary results of the time-aware LSTM model applied across all regions (Figure 6) using two distinct input configurations (Dataset 1: satellite-

based data with Sentinel-1, altimetry water level, auxilary data with ground-truth measurement; Dataset 2: satellite-based data with Sentinel-2, altimetry water level, auxilary

data with ground measurement). Additionally, scatter plots along full time-series of final results (Fold 5) illustrate the agreement between observed and predicted discharge

values for both datasets with metric score evaluation in Figure 7 with the preliminary metric results.
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• Attention layers improve interpretability by identifying the temporal relevance of input

variables across folds.

• The fold-wise transfer learning approach enhances temporal generalization and helps

stabilize predictions across unseen sequences.

• Due to LSTM’s lookback structure and satellite data frequency limitations, integration

with hydrologic models is essential for achieving daily and stable discharge estimates.

• Expand the methodology to basins with diverse climate and topography.

• Combine LSTM with other machine learning or physically-based models to improve

generalizability, especially in mountainous or morphologically dynamic areas.

• Integrate hydrologic modeling components to enable daily discharge estimation.

• Operationalize the approach for automated, large-scale application in ungauged or

data-scarce basins.

Initial Approach:

• Google Earth Engine (GEE): A powerful cloud-based spatial analysis platform providing publicly

available satellite data in Javascript and Python language, without downloading images.

• Remotely-Sensed (RS) Data Sources:

- Sentinel-1 Synthetic Aparture Radar (SAR): Water indices and backscatter bands extracted via GEE

- Sentinel-2 Multispectral Images (Level-1C): Water indices and reflectance bands extracted via GEE

• Ground Truth Discharge Measurements:

- The US Geological Survey (USGS, 2024) - Mississippi River

- The Regional Agency for Environmental Protection - Po River

- State Hydraulic Works of Türkiye (DSİ - Devlet Su İşleri, 2024) - Kizilirmak River

Ongoing Work:

• Altimetry Data: Sentinel-3 and Sentinel-6 from Hydroweb-next platform.

- GLO-30 DEM: Elevation & Slope features extracted via GEE

- Seasonality Indicators: sine/cos transformations (day-of-year) & monthly cycle

✓ Climate change – increase frequency & severity of droughts & floods - necessitates innovative &

reliable techniques for continuous monitoring of discharge to effectively manage risk.

✓ Objective: Develop a data-driven river discharge estimation algorithm that generalizes well across

diverse basins with varying hydroclimatic conditions.

✓ We utilized remotely-sensed water area, water indices, band values from optical, SAR, and altimetry

satellites, in-situ discharge observations collected during field campaigns, and both machine

learning (e.g., Random Forest Regression (RFR) (Breiman, 2001)) and deep learning method (e.g.,

Long-Short Term Memory (LSTM) (Hochreiter, S., & Schmidhuber, J., 1997) to estimate river

discharge.

Figure 1: The geographic

locations of study areas
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Figure 3: The results of the RFR model across all regions; (a.1) Memphis K-

Fold CV, (a.2) Memphis Time-split, (b.1) Pontelagoscuro K-Fold CV, (b.2)

Pontelagoscuro Time-split, (c.1) Sogutluhan K-Fold CV, (c.2) Sogutluhan

Time-split
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Figure 4: SHAP feature importance evaluation for both models across all

areas; (a) Memphis, (b) Pontelagoscuro, and (c) Sogutluhan
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DATASETS & PLATFORM

SITE SELECTION

Additionally, these

regions are characterized

by substantial alluvial

sediment deposits, which

allow for lateral water

movement in response to

discharge surges, making

them ideal for studying

surface water dynamics

and river expansion

behavior.

Model Development: The RFR model was initially trained and validated using 5-fold cross-validation.

To evaluate temporal generalizability, the same model was later trained using a time-based split. The

overall workflow is illustrated in Figure 2, while the performance results and visualized results across

all study regions are presented in Table 1 and Figure 3, respectively.

In Table 1, RMSE and logRMSE are complementary: RMSE emphasizes flood dynamics, logRMSE

captures low-flow reliability. R² presents the overall model fit.
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Figure 2: The RFR workflowfor river discharge estimation with two different models

ADVANCED APPROACH: LSTM MODELING

Model Development: The LSTM model was trained and validated using 5-fold cross-validation TimeSeriesSplit to evaluate

temporal generalizability. The overall workflow is illustrated in Figure 5. The LSTM model, integrated with a transfer learning

mechanism, provides the final evaluation on the entire sequential time series in Fold 5.

ADVANCED APPROACH: PRELIMINARY RESULTS

Figure 6: LSTM model results across all regions; (A.1) Memphis Dataset1, (A.2) Memphis Dataset2, (B.1) Pontelagoscuro

Dataset1, (B.2) Pontelagoscuro Dataset2, and (C.1) Sogutluhan Dataset1, (C.2) Sogutluhan Dataset2. Time-series predictions

across Fold 2 to Fold 5 are shown in the top panels.

Fold 1 serves as the initial training phase.

Therefore, its primary purpose is not to

deliver high predictive performance, but

rather to allow the model to learn the

underlying temporal patterns. For this

reason, Fold 1 results are not visualized.

In contrast, Fold 5 represents the final

evaluation stage. Thanks to the cumulative

learning transferred from previous folds, the

test accuracy in Fold 5 may even exceed the

training accuracy, highlighting cumulative

knowledge transfer learning, not overfitting

similar to Pontelagoscuro region Dataset 2

and Sogutluhan region Dataset 1evaluation

in Figure 6.

Figure 7: The LSTM final results of all study sites, including the agrements

between observed and estimated dicharge for each proposed area; (a) Memphis,

(b) Pontelagoscuro, and (c) Sogutluhan.
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TAKEAWAYS & OUTLOOK

Figure 5: The workflow of step-wise fold transfer for time-aware LSTM model

While the RF model performed

well under K-Fold CV validation

with high R², low RMSE during

peak flows, and consistent

logRMSE during low-flow

periods, its performance declined

when using a time-based split, as

illustrated in Figure 3 and

supported by the metrics

presented in Table 1.

This revealed limited

generalizability to unseen

temporal patterns. Since our goal

is to develop a robust and

transferable algorithm applicable

across diverse hydroclimatic

regimes, we required a model

that can adapt to sequential

dynamics and data variability.

Therefore, we transitioned to a

time-aware LSTM framework,

capable of learning temporal

dependencies and maintaining

performance across folds and

hydrological conditions (e.g.,

dry, wet, transition periods).

Feature selection for both models

was guided by SHAP analysis to

enhance interpretability, which

identifies the most influential

features contributing to model

training (Lundberg & Lee, 2017)

(Figure 4).

Table 1: The performance

metrics of K-Fold CV and

Time-split models across all

proposed areas

Full-sequence river discharge estimation (Fold 5) indicated that both datasets capture dischare dynamic more effectively than the

RF Time-split model (Figure 6). Dataset 2 slightly outperformed Dataset 1 in most metrics, particularly for peak flows, indicated

by preliminary performance results (Figure 7). 
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