The Canadian external urban and land surface modeling system (GEM-SURF):
Summertime evaluation over the Montreal metropolitan area

Sylvie Leroyer, Stéphane Bélair, Jocelyn Mailhot

Meteorological Research Division
Numerical Weather Prediction-Environment Section
Environment Canada

ASI – The Atmospheric System and its Interactions, Urban Climate

EMS Annual Meeting, Berlin, Germany, 14 Sept. 2011
CONTEXT

- Modelisation of urban processes requires very high resolution not achieved in typical NWP (resol. 15 / 2.5 km)
- Importance of micro-scale urban climate evaluation
 - Public alerts (heat waves…)
 - A tool for urban planning

THIS STUDY

- EPiCC (Environmental Prediction in Canadian Cities), summer 2008
- Development of an **external modeling system** at the Meteorological Service of Canada (near future: operational system)
Method for GEM-SURF
The External Urban and land surface Modeling System

GEM-Surface: Low cost, high resolution

Operationnal NWP Regional model

First Atmospheric level

Meteorological Inputs interpolated on the refined grid

Surface atmospheric level (canopy top)

15 km

Outputs:
- Downscaling of wind, temperature, humidity, precipitation, solar and IR radiations

Surface schemes:
- TEB & ISBA

Forcings

Turbulent fluxes, Ts for different facets T, q, wind
Vegetation classes come from a mix of:

- **EOSD** (resolution 25 m): Earth Observation for Sustainable development of forests (Natural Resources Canada), derived from satellite database
- **CCRS** (resolution 250 m): Canada Centre for Remote Sensing MODIS (2005) (program Understanding Canada from space)
Urban classes come from a semi-automatic 60-m classification (Lemonsu et al. 2006):

Decision tree applied to produce urban classes with:

- Satellite database (Landsat, or ASTER), 15 m
- Total Elevation – bald Earth’s topography (DEM and CDED1), 15 m
• Radiative Surface Temperature (°C)
 July 6th 2008 (11:00 LST)
 Warm and Sunny

Urban GEM-Surface
Resolution: 120 m

Simulation Period:
May – September 2008
Run Timestep: **30 min**
Forcing Timestep: **1 h**
Comparison with MODIS satellite data (1 km)

MOD11A1 product, Resolution: 1km
- Atmospheric effects corrected
- Satellite View Angle: 15°

- Radiative Surface Temperature (°C)
 July 6th 2008 (10:54 LST)

Urban GEM-Surface
Resolution: 938 m → upscaling

No assimilation of soil water content

\[\Delta T = \text{LST}_{\text{off-line}} - \text{LST}_{\text{MODIS}} \]
Clear-sky days
Comparison with MODIS satellite data (1 km)

Scores on clear-sky days

<table>
<thead>
<tr>
<th>Days</th>
<th>6 May</th>
<th>13 May</th>
<th>25 May</th>
<th>28 May</th>
<th>2 July</th>
<th>6 July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of SVA (°)</td>
<td>30-35</td>
<td>28-42</td>
<td>3-8</td>
<td>22-27</td>
<td>22-27</td>
<td>12-18</td>
</tr>
<tr>
<td>Time (LT)</td>
<td>1124</td>
<td>1130</td>
<td>1100</td>
<td>1048</td>
<td>1120</td>
<td>1054</td>
</tr>
<tr>
<td>Land covers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias (K)</td>
<td>-1.9</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-2.4</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>STDE (K)</td>
<td>2.4</td>
<td>2.8</td>
<td>2.7</td>
<td>3.2</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias (K)</td>
<td>-1.1</td>
<td>0.2</td>
<td>-1.6</td>
<td>-2.1</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>STDE (K)</td>
<td>1.8</td>
<td>1.9</td>
<td>3.2</td>
<td>2.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Natural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bias (K)</td>
<td>-2.6</td>
<td>-1.7</td>
<td>-0.2</td>
<td>-2.6</td>
<td>1.8</td>
<td>1.9</td>
</tr>
<tr>
<td>STDE (K)</td>
<td>2.8</td>
<td>3.4</td>
<td>2.1</td>
<td>3.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>2146 pixels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>958 pixels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1188 pixels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The EPiCC field experiment in Montreal
(Environmental Prediction in Canadian Cities)

• Long term measurements (two years)
• Focus on the Surface Energy Budget, air temperature

• Field data from O. Bergeron, I. Strachan (McGill University)
• Aerial photographs from J. Voogt (UWO)
Evaluation of the Surface Energy Budget

5 months scores (bias and STDE)
Evaluation with measurements
Comparison with the operational model

Towards 0 is better!

Land use land cover:

URB
- 37 % impervious surface
- 27 % building
- 22 % short grass and forbs
- 14 % mixed wood forests

SUB
- 16 % impervious surface
- 10 % building
- 38 % short grass and forbs
- 36 % mixed wood forests

RUR
- 100 % crops
Evaluation of the Surface Energy Budget

- Observations

△ GEM-Surface (120 m)

■ Operational Model (15 km)

Mean diurnal cycle for 9 clear-sky days
Urban site
Near-surface temperature and humidity

Intra-urban near-surface UHI

$T^\circ \ (C)$
$z=25m$

$T^\circ \ (C)$
$z=5m$

$q \ (g/kg)$
$Z=25 \ m$

$RH \ (%)$
$Z=5m$
Montreal Canopy Urban Heat Island

Nocturnal 2m Air Temperature (simulation, 120m)

6 July, 01:00 LST

UHI : 5-6 °C
Conclusions

URBAN GEM-SURF SYSTEM

- Refinement of the surface and near-surface meteorological variables at low cost
- The system has shown its ability to represent physical processes in a mixed environment (urban and natural surfaces)
- **Added value compared to current operational systems**, but closely dependent on their performance
- Plans to link it with **surface assimilation system** (CALDAS, soil moisture...)

Canada
Further achievement: Country-size 200-m forecasts with the external modeling system GEM-SURF

- Development of an experimental prototype
- Operational implementation in 2012
Surface urban characteristics for all of Canada

Method
From 5 m classifications derived from different databases (CanVec, 3D buildings, circa2000, census data) to urban parameters for simulation grid

Parameters
fractions of building, vegetation, impervious, building height, street aspect ratio...
Acknowledgments to Maria Abrahamowicz, Nathalie Gauthier, Alexandre Leroux and Vanh Souvanlasy
Thank for your attention!

P.S. : you are welcome to EMS2011-642 (Thursday, 11:00) EPiCC / Vancouver