Radius of reliability: A distance metric for interpreting and verifying spatial probability forecasts

Beth Ebert CAWCR, Bureau of Meteorology Melbourne, Australia

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Introduction

- Wish to warn for high impact events well in advance
- Location and timing often highly uncertain
- Examples:
 - Tropical cyclones
 - Deep low pressure systems
 - Severe thunderstorms
- Ensemble approach

Spatial forecasts of high impact events

High resolution grid-scale probabilities often quite low

 \rightarrow Predict probability of event occurring within radius R

- Higher probabilities can more effectively prompt action
- What should R be?

Ensemble Tropical Rainfall Potential (eTRaP) forecast for 6h rain accumulation

Australian Government

Bureau of Meteorology

Interpretation of (uncalibrated) forecast

- 1. Probability of exceeding 50 mm in 6 hours in the individual grid box
- 2. Probability of storm 6 hour rainfall exceeding 50 mm

X

Verification of eTRaP 6h PQPFs 16 Atlantic hurricanes 2004-2008

Grid scale reliability

Storm scale reliability

Probability calibration by "reassignment"

Grid scale (uncalibrated)

Grid scale (calibrated)

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Location errors exacerbate under-dispersive behavior of ensemble forecasts

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Strike probability

Cone of uncertainty

Radius of reliability – which curve crosses the diagonal

Australian Government

Bureau of Meteorology

Forecast probability <i>P</i>	Radius of reliability ROR (km)
0.1	6
0.2	9
0.3	17
0.4	21
0.5	37
0.6	32
0.7	61
0.8	78
0.9	72

Verification of eTRaP 6h PQPFs for Atlantic hurricanes 2004-2008

Radius of Reliability (ROR)

Т

Rain threshold	Forecast probability for 6 h accumulation					
	0.1	0.3	0.5	0.7	0.9	
25 mm	2 km	6 km	17 km	31 km	66 km	
50 mm	7 km	17 km	37 km	61 km	71 km	
75 mm	16 km	37 km	75 km			
100 mm	47 km	63 km				

Г

Possible uses of Radius of Reliability

Interpreting forecasts

- Converts a probabilistic forecast that is over-confident at point scale into a reliable one within a spatial area defined by ROR
- ROR undefined for under-confident forecasts
- Forecast quality metric
 - Reflects forecast uncertainty due to combined errors in location, intensity, spatial structure
 - Spatial precision of probability forecasts
 - Lower ROR \rightarrow better quality, more reliable forecasts

Calibration

Suggests appropriate spatial scale for issuing probabilistic forecasts

Additional thoughts

- Similar to neighborhood verification
 - Point forecasts matched to neighborhood of observations
 - Requires spatially dense observations
- ROR increases for increasing probability increases for rarer events
- What do users want?
 - Survey of eTRaP users (Mike Turk, NESDIS SAB)
 - 13/25 want point-based probability forecasts
 - 12/25 want area-based probability forecasts
 - NESDIS plans to issue eTRaP PQPFs both at point scale and at 40 km scale

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Beth Ebert Research Program Leader, Weather and Environmental Prediction Phone: +61 3 9669 4688 Email: e.ebert@bom.gov.au Web: www.cawcr.gov.au

www.cawcr.gov.au

