$u^{\scriptscriptstyle b}$

UNIVERSITÄT

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Diurnal variation of stratospheric ozone above Bern

K. Hocke, S. Studer, N. Kämpfer

Institute of Applied Physics and Oeschger Centre for Climate Change Research University of Bern, Bern, Switzerland

1. Motivation

- To understand the relation between diurnal ozone variation and tides
- To monitor tides by ground-based microwave radiometry
- To verify our measurements of the diurnal ozone variation
- To correct the effect of the diurnal ozone cycle in long-term series of satellites

2. Basics

- Insolation of stratospheric ozone = main reason for atmospheric tides
- Mixing and advection of ozone by tides
- Tides transfer momentum and energy
- Tides have periods of (24h)/n and are surprisingly variable

3. Diurnal variation of stratospheric ozone

- Observations are from GROMOS ozone microwave radiometer at Bern (all daytime, all weather, Δt=30 min)
- Beyond 1 hPa (stratopause) the amplitude correlates with O₃ VMR (white lines)
- Stratosphere: O₃ amplitude is maximal during summer
 Tidal amplitude is modulated by intra-seasonal oscillations

Why?

4. Diurnal variation of temperature

Observations are from the sun-synchronous satellite Aura/MLS surpassing Bern around noon and midnight

- Beyond 0.1 hPa (z ≈ 65 km) the amplitude has a semiannual variation
- > Stratosphere: T amplitude is maximal during winter
- Tidal amplitude is modulated by intra-seasonal oscillations
- Strong correlation is found between zonal wind (ECMWF operational reanalysis) and amplitude of diurnal tide (variation of geopotential height from Aura/MLS)
- > Migrating tides take westward momentum from their source region
- > Zonal mean flow must compensate for the westward wave momentum
- Correlation is also found at the tropopause and for intra-seasonal timescale

6. Conclusion

We just started and found that atmospheric tides are an exciting theme. The new observations may reveal the impact of tides on atmospheric circulation and composition.