New ECMWF Headline Verification Measures

Pertti Nurmi

Meteorological Research & Development
Finnish Meteorological Institute
(pertti.nurmi@fmi.fi)

Convenor of ECMWF/TAC Subgroup on Verification Measures

Acknowledgement to all 12 Subgroup members and ECMWF staff
Introduction

✓ Verification Expert Group established by 39.TAC, Oct 2008
✓ Participants
 1. Alexander Kann – Austria
 2. Marielle Amodei – France
 3. Martin Göber – Germany
 4. Gabriella Csima – Hungary
 5. James Hamilton – Ireland
 6. Kees Kok – Netherlands
 7. Carlos Santos – Spain
 8. Marion Mittermeier – U.K.
 10. Clive Wilson (EUMETNET)
 11. Chris Ferro (invited expert)
 12. David Stephenson (invited expert)
 13. Pertti Nurmi – Finland (Convenor)
✓ Active participation and preparatory work by ECMWF staff
✓ Four meetings, Mar 2009 ... Sep 2010 >> Proposal Oct 2010
Investigate and provide recommendations on verification measures appropriate to monitor ECMWF’s long-term progress in medium-range forecasting, with particular emphasis on early warnings of severe weather.

⇒ Recommend headline measures suitable to complement those of current ECMWF Strategy (valid until end 2010) (i.e. anomaly correlation of Z500 for the deterministic forecast and probabilistic scores of T850 for the EPS).

✓ Recommend verification procedures to aid forecasters’ decision making.

✓ Recommend measures suitable for verification of forecasts of high-impact events.

✓ Identify requirements for observational data necessary for verification.
High-impact weather

✓ Comprehensive review of available verification scores for high-impact (severe) weather was performed by the Group, including presently on-going developments

✓ The Group identified two major issues:
 1. Lack of observations at sufficient temporal and spatial resolution
 2. Lack of fundamental research into related verification in meteorological services and universities

✓ The Group identified a set of properties that verification scores (especially for extreme events) should possess
 ▪ No currently available measures satisfy these requirements

 typealias Substantial research is needed to develop suitable verification scores - both for deterministic and probabilistic forecasts
Headline measures

- **To consider**: When was the latest, generally accepted verification measure “invented” ??? ⇔ NOT a trivial task !!!
- **From upper air verification >>> To surface weather verification**
 - Subgroup reviewed surface weather variables and scores to supplement present ECMWF upper-air verification
 - ... **Precipitation** accumulated over 24 hours
 - Is *THE* most significant weather event relevant for end-users
 - Is a DMO parameter *(e.g. T2m & 10m wind are post-processed)*
 - 24-hour accumulation mitigates representativeness issues
 - Both deterministic and EPS output need to be verified
 - Verification to be done against SYNOPs, applying basic QC, applying nearest grid point approach *(WMO JWGFVR recommendation)*
Headline measures

a) **Primary scores for synoptic-scale upper-air fields** ↔ As before

- Deterministic forecast - Anomaly correlation for 500 hPa height
- EPS - Probabilistic skill for 850 hPa temperature

✓ Verification against analyses
✓ Well-established, standard scores, meet WMO requirements

b) **Supplementary scores for surface weather and severe weather**

- Surface weather: Deterministic & EPS - 24-hour precipitation
- Severe weather: Tropical Cyclone position error - EFI skill

✓ Verification against observations *(additional uncertainties)*
✓ No WMO-designated scores for these parameters !
⇒ Potential future action (?)
Headline measures

Issues:

✓ Long-term trends in performance will be monitored by considering: The number of days for which forecast skill remains above a pre-specified threshold
 ⇔ Intuitive interpretation

✓ Each individual headline score should be presented separately
 ⇔ Scores were chosen to indicate different aspects of forecast performance progress at a range of spatial and temporal scales

✓ Direct comparison of the different scores or their combination into a single index is *NOT* appropriate
Strategy, 2011 – 2020:
To follow up long-term performance of the ECMWF...

a) Keep the 2 existing primary headline measures
 i. Anomaly correlation, ACC, for the 500 hPa geopotential height for the deterministic forecasts
 ii. Continuous ranked probability skill score, CRPSS, for the 850 hPa temperature for the probabilistic forecasts

b) Introduce 4 supplementary headline measures
Headline measures

Long-term trends are monitored by:
The number of days for which the forecast skill remains above a pre-specified threshold

a) Keep the 2 existing **primary** headline measures

i. Anomalous correlation, **ACC**, for the 500 hPa geopotential height for the *deterministic forecasts*

 ➞ An appropriate threshold should be **80%** currently achieved at ~ Day 6

 ➞ An appropriate threshold should be **25%** currently achieved at ~ Day 8
Primary headline score for *deterministic* forecasts. Each curve shows the number of days for which the monthly mean (blue line) or 12-month mean centred on that month (red line) deterministic forecast skill remains above a specified threshold for 500 hPa height operational forecasts over the extra-tropical northern hemisphere. The threshold is chosen to reflect the *deterministic* forecast skill that is achieved at *day 6-6.5* at the beginning of the strategy period.
Primary headline score for *probabilistic* forecasts. Each curve shows the number of days for which the centered 3-month mean (green line) or 12-month mean (red line) probabilistic forecast skill remains above a specified threshold for 850 hPa temperature forecasts from the EPS over the extra-tropical northern hemisphere. The threshold is chosen to reflect the *probabilistic* forecast skill that is achieved at *day 8.5-9* at the beginning of the strategy period.
b) Introduce 4 supplementary headline measures

i. New 1 - **SEEPS** score for the *deterministic forecasts* of 24-hour precipitation over the extra-tropics

ii. **CRPSS**, for the *EPS probabilistic forecasts* of 24-hour precipitation over the extra-tropics

iii. Severe weather: **ROC Area** for the *EFI for 10 m wind*

iv. Severe weather: **Tropical cyclone position error** for the *deterministic forecast*
b) Introduce 4 **supplementary** headline measures

i. New 1 - SEEPS score for the *deterministic forecasts* of 24-hour precipitation over the extra-tropics

 - An appropriate threshold should be 45% currently achieved for the 24-hour period ~ 3.5 Days ahead

ii. CRPSS, for the *EPS probabilistic forecasts* of 24-hour precipitation over the extra-tropics

 - An appropriate threshold should be 10% currently achieved at ~ Day 5

iii. Severe weather: ROC Area for the *EFI for 10 m wind*

iv. Severe weather: *Tropical cyclone position error* for the *deterministic forecast*
Supplementary headline measure (ii): CRPSS for 24-hr EPS Precipitation

Supplementary headline score for *probabilistic* precipitation forecasts. The curve shows the number of days for which the centered 12-month mean skill remains above a specified threshold for precipitation forecasts over the extra-tropics. The verification is for 24-hour total precipitation verifying against available synoptic observations. The forecast day on the y-axis is the end of the 24-hour period over which the precipitation is accumulated. The threshold is chosen to reflect the forecast skill that is achieved at approximately *day 5.5* at the beginning of the strategy period.
Supplementary headline score for **deterministic** precipitation forecasts. The curve shows the number of days for which the centered 12-month mean skill remains above a specified threshold for precipitation forecasts over the extra-tropics. The verification is for 24-hour total precipitation verifying against available synoptic observations. The forecast day on the y-axis is the end of the 24-hour period over which the precipitation is accumulated. The threshold is chosen to reflect the forecast skill that is achieved at approximately **day 3.5** at the beginning of the strategy period.
Supplementary headline measure (i): 1 - SEEPS

SEEPS ⇔ Stable Equitable Error in Probability Space

✓ Rodwell et al, 2010: QJRMS, 136 + Latest ECMWF Newsletter # 128
✓ Derived from LEPS score ⇔ Linear Error in Probability Space
 ▪ Forecast error is measured in probability space using the climatological cumulative distribution function
✓ At each observation location, precipitation is partitioned into 3 categories: (i) “dry” (ii) “light precip” (iii) “heavy precip”
 ▪ Long-term climatological precipitation categories at given SYNOP stations are derived ⇔ Accounts for climate differences between stations
✓ Evaluates forecast performance across all 3 categories
✓ Stable to sample variations and obs error ⇔ Good for detecting trends
✓ Negatively oriented error measure ⇔ Perfect score = 0 ⇔ 1 - SEEPS
Supplementary headline measure (i): 1 - SEEPS

Use of Cumulative Distribution

- **Obs Cumulative Probability**
- **Precipitation (mm)**
- **TP_max**

- **Light/heavy threshold adapts to local climate**
- **'Dry' < 0.25 mm**
- **No Rain**
- **"Light Rain"**
- **"Heavy Rain"**

The characteristics and benefits of SEEPS

Stable: SEEPS is designed to be as insensitive as possible to sampling uncertainty (for sufficiently skilful forecast systems). This allows more accurate trends to be extracted from noisy data.

Equitable Error: A perfect forecast has a SEEPS score of 0. The expected score increases linearly with the unskilled component of the forecast towards a maximum value of 1.

Probability Space: This is used to define precipitation categories; SEEPS adapts to the underlying climate to assess the pertinent aspects of local weather. It can be aggregated over heterogeneous climate regions.
Supplementary headline measure (i): **1 - SEEPS**

The length in hours for which the mean skill remains above a specified threshold for 24-hour precipitation forecasts in Finland.

<table>
<thead>
<tr>
<th>Year</th>
<th>Predictability, hours</th>
<th>Status 10.9.2011</th>
<th>Target 2011</th>
<th>Target 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>76.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>77.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>74.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>85.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>86.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>91.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Status 10.9.2011: 101.2

Target 2011: 96

Target 2015: 106
Supplementary headline measures (iii) and (iv) for severe weather

10m wind speed, D+4

ROC Area

Proposal

Tropical cyclones, D+3
Mean position error (km)

EFI: Extreme event is taken as an observation exceeding 95th percentile of station climate; 4-season running mean

4-season running mean
New ECMWF Headline Verification Measures

Thank You

Acknowledgement to all 12 Subgroup members and ECMWF staff