

USE OF NATIONAL EMISSION INVENTORIES FOR AIR QUALITY MODELLING AND DEVELOPMENT **OF EMISSION REDUCTION PLANS**

N. Castell⁽¹⁾, A. L. Torres⁽¹⁾, L. Téllez⁽¹⁾, E. Mantilla⁽¹⁾, J. V. Miró⁽²⁾ ⁽¹⁾CEAM Foundation, Paterna (Valencia), Spain (nuria@ceam.es, +34 961318190) ⁽²⁾Consellería d'Infraestructures, Territori i Medi Ambient, Generalitat Valenciana

MINISTERIO DE CIENCIA E INNOVACIÓN

Air quality is considered a basic requirement for human health and comfort. However, air pollution still poses a severe threat to human health around the world. European directive 2008/50/CE defines objectives to ensure clean air, urging responsible authorities to establish policies and procedures to maintain or improve air quality.

Air quality models are fundamental tools in modern air quality management, especially for secondary pollutants, because they allow us to link the atmospheric emissions with pollutant concentrations. Air quality models require high-resolution emission input data, both spatially and temporally. Emissions are a critical part of air quality modelling because they represent the raw material for physical and chemical processes. Nevertheless, most of the uncertainty managed in the development of air quality plans comes form the estimation of anthropogenic and biogenic emissions.

In this work we present a methodology based on the joint use of National Emission Inventories with low spatial (values aggregated for a country) and temporal resolution (annual values), and high-resolution land use maps, to estimate gridded, hourly, and speciated emissions to be used in air quality modelling.

The advantages of using National Inventories for estimating anthropogenic emissions are that they are easily accessible, they are subject to revisions and quality controls, and they are annually up-dated. Moreover, this methodology enables the implementation of a modelling system for air quality management based on official emission data.

SPATIAL DISTRIBUTION			METHODOLOGY						
a b		EMISSION TYPE		EMISSION DATA	SPATIAL DISTRIBUTION	CHEMICAL SPECIATION	TEMPORAL ALLOCATION		
Leyenda Municipios		Road transport		National Emission Inventory, Gruop 7	Highways and Roads map with Daily medium traffic intensity. Poblation and vehicle census by towns.	SCC speciation	Weekday/ Weekend		
Autovías y Autopistas Carreteras		Biogenic		Guenther et al. algorithm ⁽¹⁾ .	Corine Land Cover. All non-artificial surfaces	SCC speciation	Meteorogical Model (WRF)		
	0 100 200 Km			National Emission Inventory, Group 11	Corine Land Cover. Land uses asociated with NEI group 11 activities	N/A	Steady State		
C Leyenda		Urban and Industrial activity	Gridded emision source	National Emission Inventory, Groups 1-6, 10	Corine Land Cover. Land uses asociated with NEI groups 1-6, 10 activities	City Delta Proyect ⁽²⁾	Steady State		
123 124 211+212 213 221+222+223			Ports and Airports	National Emission Inventory, Group 8	Corine Land Cover. Land uses asociated with NEI group 8 activities	City Delta Proyect	Steady State		
231 242 243 311 312 312			Large Emission Source	Spanish Pollutants Release and Transfer Register	Spatial Coordinates of point sources stacks	SCC speciation	Steady State		
321 334 411 412 511		Outside Spain		EMEP-CEIP	Included in EMEP-CEIP data	City Delta Proyect	Steady State		

Origin of emission data, spatial distribution, chemical speciation and temporal allocation procedures

		EMISSOR TYPE	ROAD TRANSPORT	BIOGENIC	SOIL	GRIDDED EMISSION SOURCE	PORTS & AIRPORTS	LARGE EMISSION SOURCE	OUTSIDE SPAIN
	j		SO2	OLE	SO2	SO2	SO2	SO2	SO2
			NO	PAR	NO	NO	NO	NO	NO
			NO2	ALD2	NO2	NO2	NO2	NO2	NO2
			OLE	ISOP	CH4	OLE	OLE	OLE	OLE
		PAR	TERPB	CO	PAR	PAR	PAR	PAR	
		TOL	NR	CO2	TOL	TOL	TOL	TOL	
		XYL		N2O	XYL	XYL	XYL	XYL	
		FORM		NH3	FORM	FORM	FORM	FORM	
		CHEMICAL	ALD2			ALD2	ALD2	ALD2	ALD2
	SPECIATION	ETH			ETH	ETH	ETH	ETH	
			NR			MEOH	MGLY	ISOP	MEOH
500.000			CH4			ETOH	CH4	NR	ETOH
			СО			ISOP	CO	N2O	ISOP
nts.		CO2			CH4	CO2	NH3	OLE2	
red,		N2O			СО	N2O		MGLY	
ha		NH3			CO2	NH3		CO	
						N2O			NH3
						NH3			

Spatial distribution of emissions. a) Highways and road allocation over Spanish towns map, used to allocate Road transport emissions. b) CLC land use distribution, included 44 land use types. 22 of them are also used for spatial allocation of gridded emissions. c) Detail of the 22 CLC land use distribution around Valencia city with Valencian Air Quality Monitoring and Control Network stations. d) 2 Km inner study domain with large emission sources. e) Greatest NMVOC (over one million tons per year) point source emissors. f) Greatest NOx (over five million tons per year) point source emissors.

f(x) = 0,61x + 240,91 $R^2 = 0,99$

Vehículos por Habitantes

Vehicles census vs. town inhabitar Not adjusted values, marked in r make necessary to adjust them with linear regression normalization.

> Chemical speciation of pollutant emitted by each emissor type. Note that NMVOC speciation varies by emissor type.

Acknowledgments:

Consellería d'Intraestructures, Territori i Medi Ambient, Generalitat Valenciana, Ministerio de España (National Emission Inventory); EEA (CLC land uses); Dirección General de Tráfico, Ministerio del Interior (Vehicle census); Instituto Nacional de Estadística (Population census, Towns surfaces shape); Dirección General de Carreteras, Ministerio de Fomento (Road Traffic Map); ES-PRTR (Large emission point sources); ⁽¹⁾Guenther, A.B., Zimmermann, P.R., Harley, P.C., Monson, R.K., Fall, R., 1993. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis. J. Geophys. Res. 98, 12 609–12 617 (Biogenic emission procedure); ⁽²⁾Cuvelier, C., Thunis, P., Vautard, R., Amann, M., Bessagnet, B., Bedogni, M., Berkowicz, R., et al. (2007). CityDelta: A model intercomparison study to explore the impact of emission reductions in European cities in 2010. Atmosenv. 2006.07.036 (NMVOC speciation profiles); US EPA (SCC profiles and specitation); Centre on Emission Inventories and Projections (EMEP data)

Min (22, 1) = 0.000, Max (49, 29) = 72,43

The Instituto Universitario CEAM-UMH is partly supported by Generalitat Valenciana, Fundación Bancaja, and the projects GRACCIE (Consolider-Ingenio2010) and FEEDBACKS (Prometeo – Generalitat Valenciana). This study has been partially funded by the MICINN through the project PROMECA (CGL2009-10309); and by the Generalitat Valenciana through the project PREVIOZONO

Min (4, 6) = 0,000, Max (23, 26) = 4530,868